2015-10-14 01:35:16 +00:00
|
|
|
|
unfold_rec.lean:10:2: proof state
|
2015-07-09 01:08:24 +00:00
|
|
|
|
n m : ℕ
|
2015-10-14 01:35:16 +00:00
|
|
|
|
⊢ succ n + succ m = succ (succ (n + m))
|
|
|
|
|
unfold_rec.lean:23:2: proof state
|
2015-07-09 01:08:24 +00:00
|
|
|
|
n m : ℕ
|
|
|
|
|
⊢ succ (n + succ m) = succ (succ (n + m))
|
2015-10-14 01:35:16 +00:00
|
|
|
|
unfold_rec.lean:38:2: proof state
|
2016-06-01 02:14:42 +00:00
|
|
|
|
fibgt0 : ∀ b n c, fib ℕ b n c > 0,
|
2015-07-09 01:08:24 +00:00
|
|
|
|
b m c : ℕ
|
|
|
|
|
⊢ fib ℕ b m c + fib ℕ b (succ m) c > 0
|
2015-10-14 01:35:16 +00:00
|
|
|
|
unfold_rec.lean:47:2: proof state
|
2015-07-09 01:08:24 +00:00
|
|
|
|
A : Type,
|
|
|
|
|
B : Type,
|
2016-06-01 02:14:42 +00:00
|
|
|
|
unzip_zip : ∀ {n} v₁ v₂, unzip (zip v₁ v₂) = (v₁, v₂),
|
2015-07-09 01:08:24 +00:00
|
|
|
|
m : ℕ,
|
|
|
|
|
a : A,
|
|
|
|
|
va : vector A m,
|
|
|
|
|
b : B,
|
|
|
|
|
vb : vector B m
|
|
|
|
|
⊢ (a :: prod.pr1 (unzip (zip va vb)), b :: prod.pr2 (unzip (zip va vb))) = (a :: va, b :: vb)
|