229 lines
8.4 KiB
Text
229 lines
8.4 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
|
|||
|
Module: data.finset
|
|||
|
Author: Leonardo de Moura
|
|||
|
|
|||
|
Finite sets
|
|||
|
-/
|
|||
|
import data.nat data.list.perm data.subtype algebra.binary algebra.function logic.identities
|
|||
|
open nat quot list subtype binary function
|
|||
|
open [declarations] perm
|
|||
|
|
|||
|
definition nodup_list (A : Type) := {l : list A | nodup l}
|
|||
|
|
|||
|
variable {A : Type}
|
|||
|
|
|||
|
definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A :=
|
|||
|
tag l n
|
|||
|
|
|||
|
definition to_nodup_list [h : decidable_eq A] (l : list A) : nodup_list A :=
|
|||
|
@to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l)
|
|||
|
|
|||
|
namespace finset
|
|||
|
|
|||
|
private definition eqv (l₁ l₂ : nodup_list A) :=
|
|||
|
perm (elt_of l₁) (elt_of l₂)
|
|||
|
|
|||
|
local infix ~ := eqv
|
|||
|
|
|||
|
private definition eqv.refl (l : nodup_list A) : l ~ l :=
|
|||
|
!perm.refl
|
|||
|
|
|||
|
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
|
|||
|
assume p, perm.symm p
|
|||
|
|
|||
|
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
|
|||
|
assume p₁ p₂, perm.trans p₁ p₂
|
|||
|
|
|||
|
definition nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
|
|||
|
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
|
|||
|
|
|||
|
definition finset (A : Type) : Type :=
|
|||
|
quot (nodup_list_setoid A)
|
|||
|
|
|||
|
definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A :=
|
|||
|
⟦to_nodup_list_of_nodup n⟧
|
|||
|
|
|||
|
definition to_finset [h : decidable_eq A] (l : list A) : finset A :=
|
|||
|
⟦to_nodup_list l⟧
|
|||
|
|
|||
|
definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) :=
|
|||
|
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
|
|||
|
(λ l₁ l₂,
|
|||
|
match decidable_perm (elt_of l₁) (elt_of l₂) with
|
|||
|
| decidable.inl e := decidable.inl (quot.sound e)
|
|||
|
| decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n)
|
|||
|
end)
|
|||
|
|
|||
|
definition mem (a : A) (s : finset A) : Prop :=
|
|||
|
quot.lift_on s (λ l, a ∈ elt_of l)
|
|||
|
(λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro
|
|||
|
(λ ainl₁, mem_perm e ainl₁)
|
|||
|
(λ ainl₂, mem_perm (perm.symm e) ainl₂)))
|
|||
|
|
|||
|
infix `∈` := mem
|
|||
|
notation a ∉ b := ¬ mem a b
|
|||
|
|
|||
|
definition mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ :=
|
|||
|
λ ainl, ainl
|
|||
|
|
|||
|
definition mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l :=
|
|||
|
λ ainl, ainl
|
|||
|
|
|||
|
definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) :=
|
|||
|
λ a s, quot.rec_on_subsingleton s
|
|||
|
(λ l, match list.decidable_mem a (elt_of l) with
|
|||
|
| decidable.inl p := decidable.inl (mem_of_mem_list p)
|
|||
|
| decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n)
|
|||
|
end)
|
|||
|
|
|||
|
theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l :=
|
|||
|
λ ainl, mem_erase_dup ainl
|
|||
|
|
|||
|
theorem mem_to_finset_of_nodub {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
|
|||
|
λ ainl, ainl
|
|||
|
|
|||
|
/- extensionality -/
|
|||
|
theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
|
|||
|
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e))
|
|||
|
|
|||
|
/- empty -/
|
|||
|
definition empty : finset A :=
|
|||
|
to_finset_of_nodup [] nodup_nil
|
|||
|
|
|||
|
notation `∅` := !empty
|
|||
|
|
|||
|
theorem not_mem_empty (a : A) : a ∉ ∅ :=
|
|||
|
λ aine : a ∈ ∅, aine
|
|||
|
|
|||
|
/- card -/
|
|||
|
definition card (s : finset A) : nat :=
|
|||
|
quot.lift_on s
|
|||
|
(λ l, length (elt_of l))
|
|||
|
(λ l₁ l₂ p, length_eq_length_of_perm p)
|
|||
|
|
|||
|
theorem card_empty : card (@empty A) = 0 :=
|
|||
|
rfl
|
|||
|
|
|||
|
/- insert -/
|
|||
|
section insert
|
|||
|
variable [h : decidable_eq A]
|
|||
|
include h
|
|||
|
|
|||
|
definition insert (a : A) (s : finset A) : finset A :=
|
|||
|
quot.lift_on s
|
|||
|
(λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l)))
|
|||
|
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
|
|||
|
|
|||
|
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
|
|||
|
quot.induction_on s
|
|||
|
(λ l : nodup_list A, mem_to_finset_of_nodub _ !list.mem_insert)
|
|||
|
|
|||
|
theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s :=
|
|||
|
quot.induction_on s
|
|||
|
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodub _ (list.mem_insert_of_mem _ ainl))
|
|||
|
|
|||
|
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
|
|||
|
quot.induction_on s
|
|||
|
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl)
|
|||
|
|
|||
|
theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 :=
|
|||
|
quot.induction_on s
|
|||
|
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
|
|||
|
end insert
|
|||
|
|
|||
|
/- erase -/
|
|||
|
section erase
|
|||
|
variable [h : decidable_eq A]
|
|||
|
include h
|
|||
|
|
|||
|
definition erase (a : A) (s : finset A) : finset A :=
|
|||
|
quot.lift_on s
|
|||
|
(λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l)))
|
|||
|
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p))
|
|||
|
|
|||
|
theorem mem_erase (a : A) (s : finset A) : a ∉ erase a s :=
|
|||
|
quot.induction_on s
|
|||
|
(λ l, list.mem_erase_of_nodup _ (has_property l))
|
|||
|
|
|||
|
theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) :=
|
|||
|
quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl)
|
|||
|
|
|||
|
theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s :=
|
|||
|
quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl)
|
|||
|
end erase
|
|||
|
|
|||
|
/- union -/
|
|||
|
section union
|
|||
|
variable [h : decidable_eq A]
|
|||
|
include h
|
|||
|
|
|||
|
definition union (s₁ s₂ : finset A) : finset A :=
|
|||
|
quot.lift_on₂ s₁ s₂
|
|||
|
(λ l₁ l₂,
|
|||
|
to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂))
|
|||
|
(nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂)))
|
|||
|
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂))
|
|||
|
|
|||
|
notation s₁ ∪ s₂ := union s₁ s₂
|
|||
|
|
|||
|
theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ :=
|
|||
|
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁)
|
|||
|
|
|||
|
theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ :=
|
|||
|
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂)
|
|||
|
|
|||
|
theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ :=
|
|||
|
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂)
|
|||
|
|
|||
|
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) :=
|
|||
|
propext (iff.intro
|
|||
|
(λ h, mem_or_mem_of_mem_union h)
|
|||
|
(λ d, or.elim d
|
|||
|
(λ i, mem_union_left _ i)
|
|||
|
(λ i, mem_union_right _ i)))
|
|||
|
|
|||
|
theorem union.comm (s₁ s₂ : finset A) : s₁ ∪ s₂ = s₂ ∪ s₁ :=
|
|||
|
ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
|
|||
|
|
|||
|
theorem union.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) :=
|
|||
|
ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc)
|
|||
|
|
|||
|
theorem union_self (s : finset A) : s ∪ s = s :=
|
|||
|
ext (λ a, iff.intro
|
|||
|
(λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i))
|
|||
|
(λ i, mem_union_left _ i))
|
|||
|
|
|||
|
theorem union_empty (s : finset A) : s ∪ ∅ = s :=
|
|||
|
ext (λ a, iff.intro
|
|||
|
(λ ain : a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, absurd i !not_mem_empty))
|
|||
|
(λ i : a ∈ s, mem_union_left _ i))
|
|||
|
|
|||
|
theorem empty_union (s : finset A) : ∅ ∪ s = s :=
|
|||
|
calc ∅ ∪ s = s ∪ ∅ : union.comm
|
|||
|
... = s : union_empty
|
|||
|
end union
|
|||
|
|
|||
|
/- acc -/
|
|||
|
section acc
|
|||
|
variable {B : Type}
|
|||
|
definition acc (f : B → A → B) (rcomm : ∀ b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁) (b : B) (s : finset A) : B :=
|
|||
|
quot.lift_on s (λ l : nodup_list A, list.foldl f b (elt_of l))
|
|||
|
(λ l₁ l₂ p, foldl_eq_of_perm rcomm p b)
|
|||
|
|
|||
|
definition bigsum (s : finset A) (f : A → nat) : nat :=
|
|||
|
acc (compose_right nat.add f) (right_commutative_compose_right nat.add f nat.add.right_comm) 0 s
|
|||
|
|
|||
|
definition bigprod (s : finset A) (f : A → nat) : nat :=
|
|||
|
acc (compose_right nat.mul f) (right_commutative_compose_right nat.mul f nat.mul.right_comm) 1 s
|
|||
|
|
|||
|
definition bigand (s : finset A) (p : A → Prop) : Prop :=
|
|||
|
acc (compose_right and p) (right_commutative_compose_right and p (λ a b c, propext (and.right_comm a b c))) true s
|
|||
|
|
|||
|
definition bigor (s : finset A) (p : A → Prop) : Prop :=
|
|||
|
acc (compose_right or p) (right_commutative_compose_right or p (λ a b c, propext (or.right_comm a b c))) false s
|
|||
|
end acc
|
|||
|
end finset
|