lean2/library/standard/cast.lean

114 lines
4.6 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic
definition cast {A B : Type} (H : A = B) (a : A) : B
:= eq_rec a H
theorem cast_refl {A : Type} (a : A) : cast (refl A) a = a
:= refl (cast (refl A) a)
theorem cast_proof_irrel {A B : Type} (H1 H2 : A = B) (a : A) : cast H1 a = cast H2 a
:= refl (cast H1 a)
theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a
:= calc cast H a = cast (refl A) a : cast_proof_irrel H (refl A) a
... = a : cast_refl a
definition heq {A B : Type} (a : A) (b : B) := ∃H, cast H a = b
infixl `==`:50 := heq
theorem heq_elim {A B : Type} {C : Prop} {a : A} {b : B} (H1 : a == b) (H2 : ∀ (Hab : A = B), cast Hab a = b → C) : C
:= obtain w Hw, from H1, H2 w Hw
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= obtain w Hw, from H, w
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
:= exists_intro (refl A) (trans (cast_refl a) H)
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
:= obtain (w : A = A) (Hw : cast w a = b), from H,
calc a = cast w a : symm (cast_eq w a)
... = b : Hw
theorem hrefl {A : Type} (a : A) : a == a
:= eq_to_heq (refl a)
theorem heqt_elim {a : Prop} (H : a == true) : a
:= eqt_elim (heq_to_eq H)
opaque_hint (hiding cast)
theorem hsubst {A B : Type} {a : A} {b : B} {P : ∀ (T : Type), T → Prop} (H1 : a == b) (H2 : P A a) : P B b
:= have Haux1 : ∀ H : A = A, P A (cast H a), from
assume H : A = A, subst (symm (cast_eq H a)) H2,
obtain (Heq : A = B) (Hw : cast Heq a = b), from H1,
have Haux2 : P B (cast Heq a), from subst Heq Haux1 Heq,
subst Hw Haux2
theorem hsymm {A B : Type} {a : A} {b : B} (H : a == b) : b == a
:= hsubst H (hrefl a)
theorem htrans {A B C : Type} {a : A} {b : B} {c : C} (H1 : a == b) (H2 : b == c) : a == c
:= hsubst H2 H1
theorem htrans_left {A B : Type} {a : A} {b c : B} (H1 : a == b) (H2 : b = c) : a == c
:= htrans H1 (eq_to_heq H2)
theorem htrans_right {A C : Type} {a b : A} {c : C} (H1 : a = b) (H2 : b == c) : a == c
:= htrans (eq_to_heq H1) H2
calc_trans htrans
calc_trans htrans_left
calc_trans htrans_right
theorem type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= hsubst H (refl A)
theorem cast_heq {A B : Type} (H : A = B) (a : A) : cast H a == a
:= have H1 : ∀ (H : A = A) (a : A), cast H a == a, from
λ H a, eq_to_heq (cast_eq H a),
subst H H1 H a
theorem cast_eq_to_heq {A B : Type} {a : A} {b : B} {H : A = B} (H1 : cast H a = b) : a == b
:= calc a == cast H a : hsymm (cast_heq H a)
... = b : H1
theorem cast_trans {A B C : Type} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (trans Hab Hbc) a
:= heq_to_eq (calc cast Hbc (cast Hab a) == cast Hab a : cast_heq Hbc (cast Hab a)
... == a : cast_heq Hab a
... == cast (trans Hab Hbc) a : hsymm (cast_heq (trans Hab Hbc) a))
theorem dcongr2 {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b
:= have e1 : ∀ (H : B a = B a), cast H (f a) = f a, from
assume H, cast_eq H (f a),
have e2 : ∀ (H : B a = B b), cast H (f a) = f b, from
subst H e1,
have e3 : cast (congr2 B H) (f a) = f b, from
e2 (congr2 B H),
cast_eq_to_heq e3
theorem pi_eq {A : Type} {B B' : A → Type} (H : B = B') : (Π x, B x) = (Π x, B' x)
:= subst H (refl (Π x, B x))
theorem cast_app' {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) : cast (pi_eq H) f a == f a
:= have H1 : ∀ (H : (Π x, B x) = (Π x, B x)), cast H f a == f a, from
assume H, eq_to_heq (congr1 (cast_eq H f) a),
have H2 : ∀ (H : (Π x, B x) = (Π x, B' x)), cast H f a == f a, from
subst H H1,
H2 (pi_eq H)
theorem cast_pull {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) :
cast (pi_eq H) f a = cast (congr1 H a) (f a)
:= heq_to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a
... == cast (congr1 H a) (f a) : hsymm (cast_heq (congr1 H a) (f a)))
theorem hcongr1' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A) (H1 : f == f') (H2 : B = B') : f a == f' a
:= heq_elim H1 (λ (Ht : (Π x, B x) = (Π x, B' x)) (Hw : cast Ht f = f'),
calc f a == cast (pi_eq H2) f a : hsymm (cast_app' H2 f a)
... = cast Ht f a : refl (cast Ht f a)
... = f' a : congr1 Hw a)