lean2/tests/lean/run/tree.lean

56 lines
1.7 KiB
Text
Raw Normal View History

import logic data.prod
open eq.ops prod
inductive tree (A : Type) :=
leaf : A → tree A,
node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
set_option pp.universes true
namespace tree
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : tree A → Type.{l₂}}
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
rec_on t
(λa, (H (leaf a) one.star, one.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
have c : C (node l r), from
H (node l r) b,
(c, b)),
pr₁ general
end
set_option pp.universes true
check no_confusion_type
definition no_confusion {A : Type} (P : Type) (t₁ t₂ : tree A) : t₁ = t₂ → no_confusion_type P t₁ t₂ :=
assume e₁ : t₁ = t₂,
have aux₁ : t₁ = t₁ → no_confusion_type P t₁ t₁, from
take h, cases_on t₁
(λ a, assume h : a = a → P, h (eq.refl a))
(λ l r, assume h : l = l → r = r → P, h (eq.refl l) (eq.refl r)),
eq.rec aux₁ e₁ e₁
check no_confusion
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
assume h : leaf a = node l r,
no_confusion false (leaf a) (node l r) h
end tree