2015-06-26 02:27:03 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
|
|
|
Declaration of the reduced suspension
|
|
|
|
-/
|
|
|
|
|
2015-09-13 18:58:11 +00:00
|
|
|
import hit.two_quotient types.pointed algebra.e_closure
|
2015-06-26 02:27:03 +00:00
|
|
|
|
|
|
|
open simple_two_quotient eq unit pointed e_closure
|
|
|
|
|
|
|
|
namespace red_susp
|
|
|
|
section
|
|
|
|
|
2016-02-15 21:05:31 +00:00
|
|
|
parameter {A : pType}
|
2015-06-26 02:27:03 +00:00
|
|
|
|
|
|
|
inductive red_susp_R : unit → unit → Type :=
|
|
|
|
| Rmk : Π(a : A), red_susp_R star star
|
|
|
|
open red_susp_R
|
|
|
|
inductive red_susp_Q : Π⦃x : unit⦄, e_closure red_susp_R x x → Type :=
|
|
|
|
| Qmk : red_susp_Q [Rmk pt]
|
|
|
|
open red_susp_Q
|
|
|
|
local abbreviation R := red_susp_R
|
|
|
|
local abbreviation Q := red_susp_Q
|
|
|
|
|
|
|
|
definition red_susp : Type := simple_two_quotient R Q -- TODO: define this in root namespace
|
|
|
|
|
|
|
|
definition base : red_susp :=
|
|
|
|
incl0 R Q star
|
|
|
|
|
|
|
|
definition merid (a : A) : base = base :=
|
|
|
|
incl1 R Q (Rmk a)
|
|
|
|
|
|
|
|
definition merid_pt : merid pt = idp :=
|
|
|
|
incl2 R Q Qmk
|
|
|
|
|
2016-04-22 19:12:25 +00:00
|
|
|
protected definition rec {P : red_susp → Type} (Pb : P base) (Pm : Π(a : A), Pb =[merid a] Pb)
|
|
|
|
(Pe : change_path merid_pt (Pm pt) = idpo) (x : red_susp) : P x :=
|
|
|
|
begin
|
|
|
|
induction x,
|
|
|
|
{ induction a, exact Pb},
|
|
|
|
{ induction s, exact Pm a},
|
|
|
|
{ induction q, esimp, exact Pe}
|
|
|
|
end
|
|
|
|
|
|
|
|
protected definition rec_on [reducible] {P : red_susp → Type} (x : red_susp) (Pb : P base)
|
|
|
|
(Pm : Π(a : A), Pb =[merid a] Pb) (Pe : change_path merid_pt (Pm pt) = idpo) : P x :=
|
|
|
|
red_susp.rec Pb Pm Pe x
|
|
|
|
|
|
|
|
definition rec_merid {P : red_susp → Type} (Pb : P base) (Pm : Π(a : A), Pb =[merid a] Pb)
|
|
|
|
(Pe : change_path merid_pt (Pm pt) = idpo) (a : A)
|
|
|
|
: apd (rec Pb Pm Pe) (merid a) = Pm a :=
|
|
|
|
!rec_incl1
|
2015-06-26 02:27:03 +00:00
|
|
|
|
|
|
|
protected definition elim {P : Type} (Pb : P) (Pm : Π(a : A), Pb = Pb)
|
|
|
|
(Pe : Pm pt = idp) (x : red_susp) : P :=
|
|
|
|
begin
|
|
|
|
induction x,
|
|
|
|
exact Pb,
|
|
|
|
induction s, exact Pm a,
|
|
|
|
induction q, exact Pe
|
|
|
|
end
|
|
|
|
|
|
|
|
protected definition elim_on [reducible] {P : Type} (x : red_susp) (Pb : P)
|
|
|
|
(Pm : Π(a : A), Pb = Pb) (Pe : Pm pt = idp) : P :=
|
|
|
|
elim Pb Pm Pe x
|
|
|
|
|
|
|
|
definition elim_merid {P : Type} {Pb : P} {Pm : Π(a : A), Pb = Pb}
|
|
|
|
(Pe : Pm pt = idp) (a : A)
|
|
|
|
: ap (elim Pb Pm Pe) (merid a) = Pm a :=
|
|
|
|
!elim_incl1
|
|
|
|
|
|
|
|
theorem elim_merid_pt {P : Type} (Pb : P) (Pm : Π(a : A), Pb = Pb)
|
|
|
|
(Pe : Pm pt = idp) : square (ap02 (elim Pb Pm Pe) merid_pt) Pe (elim_merid Pe pt) idp :=
|
|
|
|
!elim_incl2
|
|
|
|
|
|
|
|
end
|
|
|
|
end red_susp
|
|
|
|
|
|
|
|
attribute red_susp.base [constructor]
|
2016-04-22 19:12:25 +00:00
|
|
|
attribute red_susp.rec red_susp.elim [unfold 6] [recursor 6]
|
2015-07-07 23:37:06 +00:00
|
|
|
--attribute red_susp.elim_type [unfold 9]
|
2016-04-22 19:12:25 +00:00
|
|
|
attribute red_susp.rec_on red_susp.elim_on [unfold 3]
|
2015-07-07 23:37:06 +00:00
|
|
|
--attribute red_susp.elim_type_on [unfold 6]
|