21 lines
324 B
Text
21 lines
324 B
Text
|
import data.nat.basic
|
||
|
using nat
|
||
|
|
||
|
set_option pp.coercion true
|
||
|
|
||
|
namespace foo
|
||
|
theorem trans {a b c : nat} (H1 : a = b) (H2 : b = c) : a = c :=
|
||
|
trans H1 H2
|
||
|
end
|
||
|
|
||
|
using foo
|
||
|
|
||
|
theorem tst (a b : nat) (H0 : b = a) (H : b = 0) : a = 0
|
||
|
:= have H1 : a = b, from symm H0,
|
||
|
trans H1 H
|
||
|
|
||
|
definition f (a b : nat) :=
|
||
|
let x := 3 in
|
||
|
a + x
|
||
|
|