lean2/library/data/sigma.lean

60 lines
2.1 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.core.eq
using inhabited
inductive sigma {A : Type} (B : A → Type) : Type :=
dpair : Πx : A, B x → sigma B
notation `Σ` binders `,` r:(scoped P, sigma P) := r
namespace sigma
section
parameters {A : Type} {B : A → Type}
abbreviation dpr1 (p : Σ x, B x) : A := sigma_rec (λ a b, a) p
abbreviation dpr2 {A : Type} {B : A → Type} (p : Σ x, B x) : B (dpr1 p) := sigma_rec (λ a b, b) p
theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := refl a
theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := refl b
-- TODO: remove prefix when we can protect it
theorem sigma_destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
sigma_rec H p
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
sigma_destruct p (take a b, refl _)
-- Note that we give the general statment explicitly, to help the unifier
theorem dpair_eq {a1 a2 : A} {b1 : B a1} {b2 : B a2} (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2) :
dpair a1 b1 = dpair a2 b2 :=
(show ∀(b2 : B a2) (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2), dpair a1 b1 = dpair a2 b2, from
eq_rec
(take (b2' : B a1),
assume (H1' : a1 = a1),
assume (H2' : eq_rec_on H1' b1 = b2'),
show dpair a1 b1 = dpair a1 b2', from
calc
dpair a1 b1 = dpair a1 (eq_rec_on H1' b1) : {symm (eq_rec_on_id H1' b1)}
... = dpair a1 b2' : {H2'}) H1)
b2 H1 H2
theorem sigma_eq {p1 p2 : Σx : A, B x} :
∀(H1 : dpr1 p1 = dpr1 p2) (H2 : eq_rec_on H1 (dpr2 p1) = (dpr2 p2)), p1 = p2 :=
sigma_destruct p1 (take a1 b1, sigma_destruct p2 (take a2 b2 H1 H2, dpair_eq H1 H2))
theorem sigma_inhabited [instance] (H1 : inhabited A) (H2 : inhabited (B (default A))) :
inhabited (sigma B) :=
inhabited_destruct H1 (λa, inhabited_destruct H2 (λb, inhabited_mk (dpair (default A) b)))
end
instance sigma_inhabited
end sigma