19 lines
593 B
Text
19 lines
593 B
Text
|
Set: pp::colors
|
||
|
Set: pp::unicode
|
||
|
Assumed: p
|
||
|
Assumed: q
|
||
|
Assumed: r
|
||
|
Proved: T1
|
||
|
Proved: T2
|
||
|
Theorem T2 : p ⇒ q ⇒ p ∧ q ∧ p := Discharge (λ H : p, Discharge (λ H::1 : q, Conj H (Conj H::1 H)))
|
||
|
Proved: T3
|
||
|
Theorem T3 : p ⇒ p ∧ q ⇒ r ⇒ q ∧ r ∧ p :=
|
||
|
Discharge
|
||
|
(λ H : p,
|
||
|
Discharge
|
||
|
(λ H::1 : p ∧ q,
|
||
|
Discharge
|
||
|
(λ H::2 : r,
|
||
|
Conj (let H::1::2 := Conjunct2 H::1 in H::1::2)
|
||
|
(Conj H::2 (let H::1::1 := Conjunct1 H::1 in H::1::1)))))
|