lean2/hott/algebra/precategory/yoneda.hlean

115 lines
4.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.yoneda
Author: Floris van Doorn
-/
--note: modify definition in category.set
import .constructions .morphism
open eq precategory functor is_trunc equiv is_equiv pi
open is_trunc.trunctype funext precategory.ops prod.ops
set_option pp.beta true
namespace yoneda
set_option class.conservative false
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : a5 ⟶ a6) (f2 : a4 ⟶ a5) (f3 : a3 ⟶ a4) (f4 : a2 ⟶ a3) (f5 : a1 ⟶ a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
(f1 ∘ f2) ∘ f3 ∘ f4 ∘ f5 = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 : assoc
--disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop
definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2)
(λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed
-- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1))
begin
intros (x, y, z, g, f), apply eq_of_homotopy, intro h,
exact (representable_functor_assoc g.2 f.2 h f.1 g.1),
end
end yoneda
namespace functor
open prod nat_trans
variables {C D E : Precategory}
definition functor_curry_ob (F : C ×c D ⇒ E) (c : C) : E ^c D :=
functor.mk (λd, F (c,d))
(λd d' g, F (id, g))
(λd, !respect_id)
(λd₁ d₂ d₃ g' g, proof calc
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_compose c)⁻¹}
... = F ((id,g') ∘ (id, g)) : idp
... = F (id,g') ∘ F (id, g) : respect_comp F qed)
local abbreviation Fob := @functor_curry_ob
definition functor_curry_mor (F : C ×c D ⇒ E) ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' :=
nat_trans.mk (λd, F (f, id))
(λd d' g, proof calc
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
... = F (f, g ∘ id) : {id_left f}
... = F (f, g) : {id_right g}
... = F (f ∘ id, g) : {(id_right f)⁻¹}
... = F (f ∘ id, id ∘ g) : {(id_left g)⁻¹}
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ
qed)
local abbreviation Fmor := @functor_curry_mor
definition functor_curry_mor_def (F : C ×c D ⇒ E) ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
(Fmor F f) d = F (f, id) := idp
definition functor_curry_id (F : C ×c D ⇒ E) (c : C) : Fmor F (ID c) = nat_trans.id :=
nat_trans_eq_mk (λd, respect_id F _)
definition functor_curry_comp (F : C ×c D ⇒ E) ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fmor F (f' ∘ f) = Fmor F f' ∘n Fmor F f :=
nat_trans_eq_mk (λd, calc
natural_map (Fmor F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_mor_def
... = F (f' ∘ f, id ∘ id) : {(id_compose d)⁻¹}
... = F ((f',id) ∘ (f, id)) : idp
... = F (f',id) ∘ F (f, id) : respect_comp F
... = natural_map ((Fmor F f') ∘ (Fmor F f)) d : idp)
--respect_comp F (g, id) (f, id)
definition functor_curry (F : C ×c D ⇒ E) : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_mor F)
(functor_curry_id F)
(functor_curry_comp F)
definition is_equiv_functor_curry : is_equiv (@functor_curry C D E) := sorry
definition equiv_functor_curry : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.mk _ !is_equiv_functor_curry
end functor
-- Coq uses unit/counit definitions as basic
-- open yoneda precategory.product precategory.opposite functor morphism
-- --universe levels are given explicitly because Lean uses 6 variables otherwise
-- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} :=
-- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹
-- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G))
-- (is_iso_nat_iso : is_iso nat_iso)
-- infix `⊣`:55 := adjoint
-- namespace adjoint
-- universe variables l1 l2
-- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C)
-- end adjoint