15 lines
628 B
Text
15 lines
628 B
Text
|
import algebra.category.basic
|
||
|
open eq eq.ops category functor natural_transformation
|
||
|
|
||
|
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
|
||
|
|
||
|
protected definition compose2 (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
|
||
|
natural_transformation.mk
|
||
|
(λ a, η a ∘ θ a)
|
||
|
(λ a b f, calc
|
||
|
H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc
|
||
|
... = (η b ∘ G f) ∘ θ a : {naturality η f}
|
||
|
... = η b ∘ (G f ∘ θ a) : symm !assoc
|
||
|
... = η b ∘ (θ b ∘ F f) : {naturality θ f}
|
||
|
... = (η b ∘ θ b) ∘ F f : assoc)
|