2015-08-07 14:44:57 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Floris van Doorn
|
|
|
|
|
|
|
|
Theorems about the universe
|
|
|
|
-/
|
|
|
|
|
|
|
|
-- see also init.ua
|
|
|
|
|
|
|
|
import .bool .trunc .lift
|
|
|
|
|
2015-08-07 16:37:05 +00:00
|
|
|
open is_trunc bool lift unit eq pi equiv equiv.ops sum
|
2015-08-07 14:44:57 +00:00
|
|
|
|
|
|
|
namespace univ
|
|
|
|
|
2015-08-07 16:37:05 +00:00
|
|
|
universe variable u
|
|
|
|
variables {A B : Type.{u}} {a : A} {b : B}
|
|
|
|
|
|
|
|
/- Pathovers -/
|
|
|
|
|
|
|
|
definition eq_of_pathover_ua {f : A ≃ B} (p : a =[ua f] b) : f a = b :=
|
|
|
|
!cast_ua⁻¹ ⬝ tr_eq_of_pathover p
|
|
|
|
|
|
|
|
definition pathover_ua {f : A ≃ B} (p : f a = b) : a =[ua f] b :=
|
|
|
|
pathover_of_tr_eq (!cast_ua ⬝ p)
|
|
|
|
|
|
|
|
definition pathover_ua_equiv (f : A ≃ B) : (a =[ua f] b) ≃ (f a = b) :=
|
|
|
|
equiv.MK eq_of_pathover_ua
|
|
|
|
pathover_ua
|
|
|
|
abstract begin
|
|
|
|
intro p, unfold [pathover_ua,eq_of_pathover_ua],
|
|
|
|
rewrite [to_right_inv !pathover_equiv_tr_eq, inv_con_cancel_left]
|
|
|
|
end end
|
|
|
|
abstract begin
|
|
|
|
intro p, unfold [pathover_ua,eq_of_pathover_ua],
|
|
|
|
rewrite [con_inv_cancel_left, to_left_inv !pathover_equiv_tr_eq]
|
|
|
|
end end
|
|
|
|
|
|
|
|
/- Properties which can be disproven for the universe -/
|
|
|
|
|
2015-08-07 14:44:57 +00:00
|
|
|
definition not_is_hset_type0 : ¬is_hset Type₀ :=
|
|
|
|
assume H : is_hset Type₀,
|
|
|
|
absurd !is_hset.elim eq_bnot_ne_idp
|
|
|
|
|
2015-08-07 16:37:05 +00:00
|
|
|
definition not_is_hset_type.{v} : ¬is_hset Type.{v} :=
|
2015-08-07 14:44:57 +00:00
|
|
|
assume H : is_hset Type,
|
|
|
|
absurd (is_trunc_is_embedding_closed lift star) not_is_hset_type0
|
|
|
|
|
2015-08-07 16:37:05 +00:00
|
|
|
--set_option pp.notation false
|
|
|
|
definition not_double_negation_elimination0 : ¬Π(A : Type₀), ¬¬A → A :=
|
|
|
|
begin
|
|
|
|
intro f,
|
|
|
|
have u : ¬¬bool, by exact (λg, g tt),
|
|
|
|
let H1 := apdo f eq_bnot,
|
|
|
|
let H2 := apo10 H1 u,
|
|
|
|
have p : eq_bnot ▸ u = u, from !is_hprop.elim,
|
|
|
|
rewrite p at H2,
|
|
|
|
let H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700
|
|
|
|
exact absurd H3 (bnot_ne (f bool u)),
|
|
|
|
end
|
|
|
|
|
|
|
|
definition not_double_negation_elimination : ¬Π(A : Type), ¬¬A → A :=
|
|
|
|
begin
|
|
|
|
intro f,
|
|
|
|
apply not_double_negation_elimination0,
|
|
|
|
intro A nna, refine down (f _ _),
|
|
|
|
intro na,
|
|
|
|
have ¬A, begin intro a, exact absurd (up a) na end,
|
|
|
|
exact absurd this nna
|
|
|
|
end
|
|
|
|
|
|
|
|
definition not_excluded_middle : ¬Π(A : Type), A + ¬A :=
|
|
|
|
begin
|
|
|
|
intro f,
|
|
|
|
apply not_double_negation_elimination,
|
|
|
|
intro A nna,
|
|
|
|
induction (f A) with a na,
|
|
|
|
exact a,
|
|
|
|
exact absurd na nna
|
|
|
|
end
|
|
|
|
|
2015-08-07 14:44:57 +00:00
|
|
|
|
|
|
|
end univ
|