21 lines
625 B
Text
21 lines
625 B
Text
|
unfold_rec.lean:11:2: proof state
|
|||
|
n m : ℕ
|
|||
|
⊢ succ (succ n + m) = succ (succ (n + m))
|
|||
|
unfold_rec.lean:24:2: proof state
|
|||
|
n m : ℕ
|
|||
|
⊢ succ (n + succ m) = succ (succ (n + m))
|
|||
|
unfold_rec.lean:39:2: proof state
|
|||
|
fibgt0 : ∀ (b n c : ℕ), fib ℕ b n c > 0,
|
|||
|
b m c : ℕ
|
|||
|
⊢ fib ℕ b m c + fib ℕ b (succ m) c > 0
|
|||
|
unfold_rec.lean:48:2: proof state
|
|||
|
A : Type,
|
|||
|
B : Type,
|
|||
|
unzip_zip : ∀ {n : ℕ} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂),
|
|||
|
m : ℕ,
|
|||
|
a : A,
|
|||
|
va : vector A m,
|
|||
|
b : B,
|
|||
|
vb : vector B m
|
|||
|
⊢ (a :: prod.pr1 (unzip (zip va vb)), b :: prod.pr2 (unzip (zip va vb))) = (a :: va, b :: vb)
|