lean2/hott/homotopy/LES_of_homotopy_groups.hlean

818 lines
32 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
We define the fiber sequence of a pointed map f : X →* Y. We mostly follow the proof in section 8.4
of the book.
PART 1:
We define a sequence fiber_sequence as in Definition 8.4.3.
It has types X(n) : Type*
X(0) := Y,
X(1) := X,
X(n+1) := fiber (f(n))
with functions f(n) : X(n+1) →* X(n)
f(0) := f
f(n+1) := point (f(n)) [this is the first projection]
We prove that this is an exact sequence.
Then we prove Lemma 8.4.3, by showing that X(n+3) ≃* Ω(X(n)) and that this equivalence sends
the pointed map f(n+3) to -Ω(f(n)), i.e. the composition of Ω(f(n)) with path inversion.
Using this equivalence we get a boundary_map : Ω(Y) → pfiber f.
PART 2:
Now we can define a new fiber sequence X'(n) : Type*, and here we slightly diverge from the book.
We define it as
X'(0) := Y,
X'(1) := X,
X'(2) := fiber f
X'(n+3) := Ω(X'(n))
with maps f'(n) : X'(n+1) →* X'(n)
f'(0) := f
f'(1) := point f
f'(2) := boundary_map
f'(n+3) := Ω(f'(n))
This sequence is not equivalent to the previous sequence. The difference is in the signs.
The sequence f has negative signs (i.e. is composed with the inverse maps) for n ≡ 3, 4, 5 mod 6.
This sign information is captured by e : X'(n) ≃* X'(n) such that
e(k) := 1 for k = 0,1,2,3
e(k+3) := Ω(e(k)) ∘ (-)⁻¹ for k > 0
Now the sequence (X', f' ∘ e) is equivalent to (X, f), Hence (X', f' ∘ e) is an exact sequence.
We then prove that (X', f') is an exact sequence by using that there are other equivalences
eₗ and eᵣ such that
f' = eᵣ ∘ f' ∘ e
f' ∘ eₗ = e ∘ f'.
(this fact is type_chain_complex_cancel_aut and is_exact_at_t_cancel_aut in the file chain_complex)
eₗ and eᵣ are almost the same as e, except that the places where the inverse is taken is
slightly shifted:
eᵣ = (-)⁻¹ for n ≡ 3, 4, 5 mod 6 and eᵣ = 1 otherwise
e = (-)⁻¹ for n ≡ 4, 5, 6 mod 6 (except for n = 0) and e = 1 otherwise
eₗ = (-)⁻¹ for n ≡ 5, 6, 7 mod 6 (except for n = 0, 1) and eₗ = 1 otherwise
PART 3:
We change the type over which the sequence of types and maps are indexed from to × 3
(where 3 is the finite type with 3 elements). The reason is that we have that X'(3n) = Ωⁿ(Y), but
this equality is not definitionally true. Hence we cannot even state whether f'(3n) = Ωⁿ(f) without
using transports. This gets ugly. However, if we use as index type × 3, we can do this. We can
define
Y : × 3 → Type* as
Y(n, 0) := Ωⁿ(Y)
Y(n, 1) := Ωⁿ(X)
Y(n, 2) := Ωⁿ(fiber f)
with maps g(n) : Y(S n) →* Y(n) (where the successor is defined in the obvious way)
g(n, 0) := Ωⁿ(f)
g(n, 1) := Ωⁿ(point f)
g(n, 2) := Ωⁿ(boundary_map) ∘ cast
Here "cast" is the transport over the equality Ωⁿ⁺¹(Y) = Ωⁿ(Ω(Y)). We show that the sequence
(, X', f') is equivalent to ( × 3, Y, g).
PART 4:
We get the long exact sequence of homotopy groups by taking the set-truncation of (Y, g).
-/
import .chain_complex algebra.homotopy_group eq2
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc algebra function sum
/--------------
PART 1
--------------/
namespace chain_complex
definition fiber_sequence_helper [constructor] (v : Σ(X Y : Type*), X →* Y)
: Σ(Z X : Type*), Z →* X :=
⟨pfiber v.2.2, v.1, ppoint v.2.2⟩
definition fiber_sequence_helpern (v : Σ(X Y : Type*), X →* Y) (n : )
: Σ(Z X : Type*), Z →* X :=
iterate fiber_sequence_helper n v
section
universe variable u
parameters {X Y : pType.{u}} (f : X →* Y)
include f
definition fiber_sequence_carrier (n : ) : Type* :=
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.1
definition fiber_sequence_fun (n : )
: fiber_sequence_carrier (n + 1) →* fiber_sequence_carrier n :=
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.2
/- Definition 8.4.3 -/
definition fiber_sequence : type_chain_complex.{0 u} + :=
begin
fconstructor,
{ exact fiber_sequence_carrier},
{ exact fiber_sequence_fun},
{ intro n x, cases n with n,
{ exact point_eq x},
{ exact point_eq x}}
end
definition is_exact_fiber_sequence : is_exact_t fiber_sequence :=
λn x p, fiber.mk (fiber.mk x p) rfl
/- (generalization of) Lemma 8.4.4(i)(ii) -/
definition fiber_sequence_carrier_equiv (n : )
: fiber_sequence_carrier (n+3) ≃ Ω(fiber_sequence_carrier n) :=
calc
fiber_sequence_carrier (n+3) ≃ fiber (fiber_sequence_fun (n+1)) pt : erfl
... ≃ Σ(x : fiber_sequence_carrier _), fiber_sequence_fun (n+1) x = pt
: fiber.sigma_char
... ≃ Σ(x : fiber (fiber_sequence_fun n) pt), fiber_sequence_fun _ x = pt
: erfl
... ≃ Σ(v : Σ(x : fiber_sequence_carrier _), fiber_sequence_fun _ x = pt),
fiber_sequence_fun _ (fiber.mk v.1 v.2) = pt
: by exact sigma_equiv_sigma !fiber.sigma_char (λa, erfl)
... ≃ Σ(v : Σ(x : fiber_sequence_carrier _), fiber_sequence_fun _ x = pt),
v.1 = pt
: erfl
... ≃ Σ(v : Σ(x : fiber_sequence_carrier _), x = pt),
fiber_sequence_fun _ v.1 = pt
: sigma_assoc_comm_equiv
... ≃ fiber_sequence_fun _ !center.1 = pt
: @(sigma_equiv_of_is_contr_left _) !is_contr_sigma_eq'
... ≃ fiber_sequence_fun _ pt = pt
: erfl
... ≃ pt = pt
: by exact !equiv_eq_closed_left !respect_pt
... ≃ Ω(fiber_sequence_carrier n) : erfl
/- computation rule -/
definition fiber_sequence_carrier_equiv_eq (n : )
(x : fiber_sequence_carrier (n+1)) (p : fiber_sequence_fun n x = pt)
(q : fiber_sequence_fun (n+1) (fiber.mk x p) = pt)
: fiber_sequence_carrier_equiv n (fiber.mk (fiber.mk x p) q)
= !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun n) q⁻¹ ⬝ p :=
begin
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
refine transport_eq_Fl _ _ ⬝ _,
apply whisker_right,
refine inverse2 !ap_inv ⬝ !inv_inv ⬝ _,
refine ap_compose (fiber_sequence_fun n) pr₁ _ ⬝
ap02 (fiber_sequence_fun n) !ap_pr1_center_eq_sigma_eq',
end
definition fiber_sequence_carrier_equiv_inv_eq (n : )
(p : Ω(fiber_sequence_carrier n)) : (fiber_sequence_carrier_equiv n)⁻¹ᵉ p =
fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun n) ⬝ p)) idp :=
begin
apply inv_eq_of_eq,
refine _ ⬝ !fiber_sequence_carrier_equiv_eq⁻¹, esimp,
exact !inv_con_cancel_left⁻¹
end
definition fiber_sequence_carrier_pequiv (n : )
: fiber_sequence_carrier (n+3) ≃* Ω(fiber_sequence_carrier n) :=
pequiv_of_equiv (fiber_sequence_carrier_equiv n)
begin
esimp,
apply con.left_inv
end
definition fiber_sequence_carrier_pequiv_eq (n : )
(x : fiber_sequence_carrier (n+1)) (p : fiber_sequence_fun n x = pt)
(q : fiber_sequence_fun (n+1) (fiber.mk x p) = pt)
: fiber_sequence_carrier_pequiv n (fiber.mk (fiber.mk x p) q)
= !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun n) q⁻¹ ⬝ p :=
fiber_sequence_carrier_equiv_eq n x p q
definition fiber_sequence_carrier_pequiv_inv_eq (n : )
(p : Ω(fiber_sequence_carrier n)) : (fiber_sequence_carrier_pequiv n)⁻¹ᵉ* p =
fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun n) ⬝ p)) idp :=
by rexact fiber_sequence_carrier_equiv_inv_eq n p
/- Lemma 8.4.4(iii) -/
definition fiber_sequence_fun_eq_helper (n : )
(p : Ω(fiber_sequence_carrier (n + 1))) :
fiber_sequence_carrier_pequiv n
(fiber_sequence_fun (n + 3)
((fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* p)) =
ap1 (fiber_sequence_fun n) p⁻¹ :=
begin
refine ap (λx, fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x))
(fiber_sequence_carrier_pequiv_inv_eq (n+1) p) ⬝ _,
/- the following three lines are rewriting some reflexivities: -/
-- replace (n + 3) with (n + 2 + 1),
-- refine ap (fiber_sequence_carrier_pequiv n)
-- (fiber_sequence_fun_eq1 (n+2) _ idp) ⬝ _,
refine fiber_sequence_carrier_pequiv_eq n pt (respect_pt (fiber_sequence_fun n)) _ ⬝ _,
esimp,
apply whisker_right,
apply whisker_left,
apply ap02, apply inverse2, apply idp_con,
end
theorem fiber_sequence_carrier_pequiv_eq_point_eq_idp (n : ) :
fiber_sequence_carrier_pequiv_eq n
(Point (fiber_sequence_carrier (n+1)))
(respect_pt (fiber_sequence_fun n))
(respect_pt (fiber_sequence_fun (n + 1))) = idp :=
begin
apply con_inv_eq_idp,
refine ap (λx, whisker_left _ (_ ⬝ x)) _ ⬝ _,
{ reflexivity},
{ reflexivity},
refine ap (whisker_left _)
(transport_eq_Fl_idp_left (fiber_sequence_fun n)
(respect_pt (fiber_sequence_fun n))) ⬝ _,
apply whisker_left_idp_con_eq_assoc
end
theorem fiber_sequence_fun_phomotopy_helper (n : ) :
(fiber_sequence_carrier_pequiv n ∘*
fiber_sequence_fun (n + 3)) ∘*
(fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* ~*
ap1 (fiber_sequence_fun n) ∘* pinverse :=
begin
fapply phomotopy.mk,
{ exact chain_complex.fiber_sequence_fun_eq_helper f n},
{ esimp, rewrite [idp_con], refine _ ⬝ whisker_left _ !idp_con⁻¹,
apply whisker_right,
apply whisker_left,
exact chain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp f n}
end
theorem fiber_sequence_fun_eq (n : ) : Π(x : fiber_sequence_carrier (n + 4)),
fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x) =
ap1 (fiber_sequence_fun n) (fiber_sequence_carrier_pequiv (n + 1) x)⁻¹ :=
begin
apply homotopy_of_inv_homotopy_pre (fiber_sequence_carrier_pequiv (n + 1)),
apply fiber_sequence_fun_eq_helper n
end
theorem fiber_sequence_fun_phomotopy (n : ) :
fiber_sequence_carrier_pequiv n ∘*
fiber_sequence_fun (n + 3) ~*
(ap1 (fiber_sequence_fun n) ∘* pinverse) ∘* fiber_sequence_carrier_pequiv (n + 1) :=
begin
apply phomotopy_of_pinv_right_phomotopy,
apply fiber_sequence_fun_phomotopy_helper
end
definition boundary_map : Ω Y →* pfiber f :=
fiber_sequence_fun 2 ∘* (fiber_sequence_carrier_pequiv 0)⁻¹ᵉ*
/--------------
PART 2
--------------/
/- Now we are ready to define the long exact sequence of homotopy groups.
First we define its carrier -/
definition loop_spaces : → Type*
| 0 := Y
| 1 := X
| 2 := pfiber f
| (k+3) := Ω (loop_spaces k)
/- The maps between the homotopy groups -/
definition loop_spaces_fun
: Π(n : ), loop_spaces (n+1) →* loop_spaces n
| 0 := proof f qed
| 1 := proof ppoint f qed
| 2 := proof boundary_map qed
| (k+3) := proof ap1 (loop_spaces_fun k) qed
definition loop_spaces_fun_add3 [unfold_full] (n : ) :
loop_spaces_fun (n + 3) = ap1 (loop_spaces_fun n) :=
proof idp qed
definition fiber_sequence_pequiv_loop_spaces :
Πn, fiber_sequence_carrier n ≃* loop_spaces n
| 0 := by reflexivity
| 1 := by reflexivity
| 2 := by reflexivity
| (k+3) :=
begin
refine fiber_sequence_carrier_pequiv k ⬝e* _,
apply loop_pequiv_loop,
exact fiber_sequence_pequiv_loop_spaces k
end
definition fiber_sequence_pequiv_loop_spaces_add3 (n : )
: fiber_sequence_pequiv_loop_spaces (n + 3) =
ap1 (fiber_sequence_pequiv_loop_spaces n) ∘* fiber_sequence_carrier_pequiv n :=
by reflexivity
definition fiber_sequence_pequiv_loop_spaces_3_phomotopy
: fiber_sequence_pequiv_loop_spaces 3 ~* proof fiber_sequence_carrier_pequiv nat.zero qed :=
begin
refine pwhisker_right _ ap1_id ⬝* _,
apply pid_comp
end
definition pid_or_pinverse : Π(n : ), loop_spaces n ≃* loop_spaces n
| 0 := pequiv.rfl
| 1 := pequiv.rfl
| 2 := pequiv.rfl
| 3 := pequiv.rfl
| (k+4) := !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (k+1))
definition pid_or_pinverse_add4 (n : )
: pid_or_pinverse (n + 4) = !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (n + 1)) :=
by reflexivity
definition pid_or_pinverse_add4_rev : Π(n : ),
pid_or_pinverse (n + 4) ~* pinverse ∘* Ω→(pid_or_pinverse (n + 1))
| 0 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
replace pid_or_pinverse (0 + 1) with pequiv.refl X,
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
| 1 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
replace pid_or_pinverse (1 + 1) with pequiv.refl (pfiber f),
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
| 2 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
replace pid_or_pinverse (2 + 1) with pequiv.refl (Ω Y),
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
| (k+3) :=
begin
replace (k + 3 + 1) with (k + 4),
rewrite [+ pid_or_pinverse_add4, + to_pmap_pequiv_trans],
refine _ ⬝* pwhisker_left _ !ap1_compose⁻¹*,
refine _ ⬝* !passoc,
apply pconcat2,
{ refine ap1_phomotopy (pid_or_pinverse_add4_rev k) ⬝* _,
refine !ap1_compose ⬝* _, apply pwhisker_right, apply ap1_pinverse},
{ refine !ap1_pinverse⁻¹*}
end
theorem fiber_sequence_phomotopy_loop_spaces : Π(n : ),
fiber_sequence_pequiv_loop_spaces n ∘* fiber_sequence_fun n ~*
(loop_spaces_fun n ∘* pid_or_pinverse (n + 1)) ∘* fiber_sequence_pequiv_loop_spaces (n + 1)
| 0 := proof proof phomotopy.rfl qed ⬝* pwhisker_right _ !comp_pid⁻¹* qed
| 1 := by reflexivity
| 2 :=
begin
refine !pid_comp ⬝* _,
replace loop_spaces_fun 2 with boundary_map,
refine _ ⬝* pwhisker_left _ fiber_sequence_pequiv_loop_spaces_3_phomotopy⁻¹*,
apply phomotopy_of_pinv_right_phomotopy,
exact !pid_comp⁻¹*
end
| (k+3) :=
begin
replace (k + 3 + 1) with (k + 1 + 3),
rewrite [fiber_sequence_pequiv_loop_spaces_add3 k,
fiber_sequence_pequiv_loop_spaces_add3 (k+1)],
refine !passoc ⬝* _,
refine pwhisker_left _ (fiber_sequence_fun_phomotopy k) ⬝* _,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
replace (k + 1 + 3) with (k + 4),
xrewrite [loop_spaces_fun_add3, pid_or_pinverse_add4, to_pmap_pequiv_trans],
refine _ ⬝* !passoc⁻¹*,
refine _ ⬝* pwhisker_left _ !passoc⁻¹*,
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !ap1_compose_pinverse),
refine !passoc⁻¹* ⬝* _ ⬝* !passoc ⬝* !passoc,
apply pwhisker_right,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose ⬝* pwhisker_right _ !ap1_compose,
apply ap1_phomotopy,
exact fiber_sequence_phomotopy_loop_spaces k
end
definition pid_or_pinverse_right : Π(n : ), loop_spaces n →* loop_spaces n
| 0 := !pid
| 1 := !pid
| 2 := !pid
| (k+3) := Ω→(pid_or_pinverse_right k) ∘* pinverse
definition pid_or_pinverse_left : Π(n : ), loop_spaces n →* loop_spaces n
| 0 := pequiv.rfl
| 1 := pequiv.rfl
| 2 := pequiv.rfl
| 3 := pequiv.rfl
| 4 := pequiv.rfl
| (k+5) := Ω→(pid_or_pinverse_left (k+2)) ∘* pinverse
definition pid_or_pinverse_right_add3 (n : )
: pid_or_pinverse_right (n + 3) = Ω→(pid_or_pinverse_right n) ∘* pinverse :=
by reflexivity
definition pid_or_pinverse_left_add5 (n : )
: pid_or_pinverse_left (n + 5) = Ω→(pid_or_pinverse_left (n+2)) ∘* pinverse :=
by reflexivity
theorem pid_or_pinverse_commute_right : Π(n : ),
loop_spaces_fun n ~* pid_or_pinverse_right n ∘* loop_spaces_fun n ∘* pid_or_pinverse (n + 1)
| 0 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
| 1 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
| 2 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
| (k+3) :=
begin
replace (k + 3 + 1) with (k + 4),
rewrite [pid_or_pinverse_right_add3, loop_spaces_fun_add3],
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !pid_or_pinverse_add4_rev⁻¹*),
refine ap1_phomotopy (pid_or_pinverse_commute_right k) ⬝* _,
refine !ap1_compose ⬝* _ ⬝* !passoc⁻¹*,
apply pwhisker_left,
refine !ap1_compose ⬝* _ ⬝* !passoc ⬝* !passoc,
apply pwhisker_right,
refine _ ⬝* pwhisker_right _ !ap1_compose_pinverse,
refine _ ⬝* !passoc⁻¹*,
refine !comp_pid⁻¹* ⬝* pwhisker_left _ _,
symmetry, apply pinverse_pinverse
end
theorem pid_or_pinverse_commute_left : Π(n : ),
loop_spaces_fun n ∘* pid_or_pinverse_left (n + 1) ~* pid_or_pinverse n ∘* loop_spaces_fun n
| 0 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
| 1 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
| 2 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
| 3 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
| (k+4) :=
begin
replace (k + 4 + 1) with (k + 5),
rewrite [pid_or_pinverse_left_add5, pid_or_pinverse_add4, to_pmap_pequiv_trans],
replace (k + 4) with (k + 1 + 3),
rewrite [loop_spaces_fun_add3],
refine !passoc⁻¹* ⬝* _ ⬝* !passoc⁻¹*,
refine _ ⬝* pwhisker_left _ !ap1_compose_pinverse,
refine _ ⬝* !passoc,
apply pwhisker_right,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose,
exact ap1_phomotopy (pid_or_pinverse_commute_left (k+1))
end
definition LES_of_loop_spaces' [constructor] : type_chain_complex + :=
transfer_type_chain_complex
fiber_sequence
(λn, loop_spaces_fun n ∘* pid_or_pinverse (n + 1))
fiber_sequence_pequiv_loop_spaces
fiber_sequence_phomotopy_loop_spaces
definition LES_of_loop_spaces [constructor] : type_chain_complex + :=
type_chain_complex_cancel_aut
LES_of_loop_spaces'
loop_spaces_fun
pid_or_pinverse
pid_or_pinverse_right
(λn x, idp)
pid_or_pinverse_commute_right
definition is_exact_LES_of_loop_spaces : is_exact_t LES_of_loop_spaces :=
begin
intro n,
refine is_exact_at_t_cancel_aut n pid_or_pinverse_left _ _ pid_or_pinverse_commute_left _,
apply is_exact_at_t_transfer,
apply is_exact_fiber_sequence
end
open prod succ_str fin
/--------------
PART 3
--------------/
definition loop_spaces2 [reducible] : +3 → Type*
| (n, fin.mk 0 H) := Ω[n] Y
| (n, fin.mk 1 H) := Ω[n] X
| (n, fin.mk k H) := Ω[n] (pfiber f)
definition loop_spaces2_add1 (n : ) : Π(x : fin 3),
loop_spaces2 (n+1, x) = Ω (loop_spaces2 (n, x))
| (fin.mk 0 H) := by reflexivity
| (fin.mk 1 H) := by reflexivity
| (fin.mk 2 H) := by reflexivity
| (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition loop_spaces_fun2 : Π(n : +3), loop_spaces2 (S n) →* loop_spaces2 n
| (n, fin.mk 0 H) := proof Ω→[n] f qed
| (n, fin.mk 1 H) := proof Ω→[n] (ppoint f) qed
| (n, fin.mk 2 H) := proof Ω→[n] boundary_map ∘* loop_space_succ_in Y n qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition loop_spaces_fun2_add1_0 (n : ) (H : 0 < succ 2)
: loop_spaces_fun2 (n+1, fin.mk 0 H) ~*
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 0 H)) :=
by reflexivity
definition loop_spaces_fun2_add1_1 (n : ) (H : 1 < succ 2)
: loop_spaces_fun2 (n+1, fin.mk 1 H) ~*
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 1 H)) :=
by reflexivity
definition loop_spaces_fun2_add1_2 (n : ) (H : 2 < succ 2)
: loop_spaces_fun2 (n+1, fin.mk 2 H) ~*
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 2 H)) :=
proof !ap1_compose⁻¹* qed
definition nat_of_str [unfold 2] [reducible] {n : } : × fin (succ n) → :=
λx, succ n * pr1 x + val (pr2 x)
definition str_of_nat {n : } : × fin (succ n) :=
λm, (m / (succ n), mk_mod n m)
definition nat_of_str_3S [unfold 2] [reducible]
: Π(x : stratified + 2), nat_of_str x + 1 = nat_of_str (@S (stratified + 2) x)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fin_prod_nat_equiv_nat [constructor] (n : ) : × fin (succ n) ≃ :=
equiv.MK nat_of_str str_of_nat
abstract begin
intro m, unfold [nat_of_str, str_of_nat, mk_mod],
refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹,
rewrite [mul.comm]
end end
abstract begin
intro x, cases x with m k,
cases k with k H,
apply prod_eq: esimp [str_of_nat],
{ rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ), ▸*,
div_eq_zero_of_lt H, zero_add]},
{ apply eq_of_veq, esimp [mk_mod],
rewrite [add.comm, add_mul_mod_self_left, ▸*, mod_eq_of_lt H]}
end end
/-
note: in the following theorem the (n+1) case is 3 times the same,
so maybe this can be simplified
-/
definition loop_spaces2_pequiv' : Π(n : ) (x : fin (nat.succ 2)),
loop_spaces (nat_of_str (n, x)) ≃* loop_spaces2 (n, x)
| 0 (fin.mk 0 H) := by reflexivity
| 0 (fin.mk 1 H) := by reflexivity
| 0 (fin.mk 2 H) := by reflexivity
| (n+1) (fin.mk 0 H) :=
begin
apply loop_pequiv_loop,
rexact loop_spaces2_pequiv' n (fin.mk 0 H)
end
| (n+1) (fin.mk 1 H) :=
begin
apply loop_pequiv_loop,
rexact loop_spaces2_pequiv' n (fin.mk 1 H)
end
| (n+1) (fin.mk 2 H) :=
begin
apply loop_pequiv_loop,
rexact loop_spaces2_pequiv' n (fin.mk 2 H)
end
| n (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition loop_spaces2_pequiv : Π(x : +3),
loop_spaces (nat_of_str x) ≃* loop_spaces2 x
| (n, x) := loop_spaces2_pequiv' n x
local attribute loop_pequiv_loop [reducible]
/- all cases where n>0 are basically the same -/
definition loop_spaces_fun2_phomotopy (x : +3) :
loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~*
(loop_spaces_fun2 x ∘* loop_spaces2_pequiv (S x))
∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) :=
begin
cases x with n x, cases x with k H,
do 3 (cases k with k; rotate 1),
{ /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left},
{ /-k=0-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_0⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=1-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_1⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=2-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !comp_pid⁻¹* ⬝* pconcat2 _ _,
{ exact (comp_pid (chain_complex.boundary_map f))⁻¹*},
{ refine cast (ap (λx, _ ~* x) !loop_pequiv_loop_rfl)⁻¹ _, reflexivity}},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
end
definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3 :=
transfer_type_chain_complex2
LES_of_loop_spaces
!fin_prod_nat_equiv_nat
nat_of_str_3S
@loop_spaces_fun2
@loop_spaces2_pequiv
begin
intro m x,
refine loop_spaces_fun2_phomotopy m x ⬝ _,
apply ap (loop_spaces_fun2 m), apply ap (loop_spaces2_pequiv (S m)),
esimp, exact ap010 cast !ap_compose⁻¹ x
end
definition is_exact_LES_of_loop_spaces2 : is_exact_t LES_of_loop_spaces2 :=
begin
intro n,
apply is_exact_at_t_transfer2,
apply is_exact_LES_of_loop_spaces
end
definition LES_of_homotopy_groups' [constructor] : chain_complex +3 :=
trunc_chain_complex LES_of_loop_spaces2
/--------------
PART 4
--------------/
definition homotopy_groups [reducible] : +3 → Set*
| (n, fin.mk 0 H) := π*[n] Y
| (n, fin.mk 1 H) := π*[n] X
| (n, fin.mk k H) := π*[n] (pfiber f)
definition homotopy_groups_pequiv_loop_spaces2 [reducible]
: Π(n : +3), ptrunc 0 (loop_spaces2 n) ≃* homotopy_groups n
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun : Π(n : +3), homotopy_groups (S n) →* homotopy_groups n
| (n, fin.mk 0 H) := proof π→*[n] f qed
| (n, fin.mk 1 H) := proof π→*[n] (ppoint f) qed
| (n, fin.mk 2 H) :=
proof π→*[n] boundary_map ∘* phomotopy_group_succ_in Y n qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun_phomotopy_loop_spaces_fun2 [reducible]
: Π(n : +3), homotopy_groups_pequiv_loop_spaces2 n ∘* ptrunc_functor 0 (loop_spaces_fun2 n) ~*
homotopy_groups_fun n ∘* homotopy_groups_pequiv_loop_spaces2 (S n)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose
end
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition LES_of_homotopy_groups [constructor] : chain_complex +3 :=
transfer_chain_complex
LES_of_homotopy_groups'
homotopy_groups_fun
homotopy_groups_pequiv_loop_spaces2
homotopy_groups_fun_phomotopy_loop_spaces_fun2
definition is_exact_LES_of_homotopy_groups : is_exact LES_of_homotopy_groups :=
begin
intro n,
apply is_exact_at_transfer,
apply is_exact_at_trunc,
apply is_exact_LES_of_loop_spaces2
end
variable (n : )
/- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/
example : LES_of_homotopy_groups (str_of_nat 6) = π*[2] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups (str_of_nat 7) = π*[2] X :> Set* := by reflexivity
example : LES_of_homotopy_groups (str_of_nat 8) = π*[2] (pfiber f) :> Set* := by reflexivity
example : LES_of_homotopy_groups (str_of_nat 9) = π*[3] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups (str_of_nat 10) = π*[3] X :> Set* := by reflexivity
example : LES_of_homotopy_groups (str_of_nat 11) = π*[3] (pfiber f) :> Set* := by reflexivity
definition LES_of_homotopy_groups_0 : LES_of_homotopy_groups (n, 0) = π*[n] Y :=
by reflexivity
definition LES_of_homotopy_groups_1 : LES_of_homotopy_groups (n, 1) = π*[n] X :=
by reflexivity
definition LES_of_homotopy_groups_2 : LES_of_homotopy_groups (n, 2) = π*[n] (pfiber f) :=
by reflexivity
/-
the functions of the fiber sequence is definitionally what we want (as pointed function).
-/
definition LES_of_homotopy_groups_fun_0 :
cc_to_fn LES_of_homotopy_groups (n, 0) = π→*[n] f :=
by reflexivity
definition LES_of_homotopy_groups_fun_1 :
cc_to_fn LES_of_homotopy_groups (n, 1) = π→*[n] (ppoint f) :=
by reflexivity
definition LES_of_homotopy_groups_fun_2 : cc_to_fn LES_of_homotopy_groups (n, 2) =
π→*[n] boundary_map ∘* phomotopy_group_succ_in Y n :=
by reflexivity
open group
definition group_LES_of_homotopy_groups (n : ) : Π(x : fin (succ 2)),
group (LES_of_homotopy_groups (n + 1, x))
| (fin.mk 0 H) := begin rexact group_homotopy_group n Y end
| (fin.mk 1 H) := begin rexact group_homotopy_group n X end
| (fin.mk 2 H) := begin rexact group_homotopy_group n (pfiber f) end
| (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition comm_group_LES_of_homotopy_groups (n : ) : Π(x : fin (succ 2)),
comm_group (LES_of_homotopy_groups (n + 2, x))
| (fin.mk 0 H) := proof comm_group_homotopy_group n Y qed
| (fin.mk 1 H) := proof comm_group_homotopy_group n X qed
| (fin.mk 2 H) := proof comm_group_homotopy_group n (pfiber f) qed
| (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition Group_LES_of_homotopy_groups (x : +3) : MulGroup.{u} :=
MulGroup.mk (LES_of_homotopy_groups (nat.succ (pr1 x), pr2 x))
(group_LES_of_homotopy_groups (pr1 x) (pr2 x))
definition CommGroup_LES_of_homotopy_groups (n : +3) : MulCommGroup.{u} :=
MulCommGroup.mk (LES_of_homotopy_groups (pr1 n + 2, pr2 n))
(comm_group_LES_of_homotopy_groups (pr1 n) (pr2 n))
definition homomorphism_LES_of_homotopy_groups_fun : Π(k : +3),
Group_LES_of_homotopy_groups (S k) →g Group_LES_of_homotopy_groups k
| (k, fin.mk 0 H) :=
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 0))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 1 H) :=
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 1))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 2 H) :=
begin
apply homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 2)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun_2],
refine homomorphism.struct ((π→g[k+1] boundary_map) ∘g ghomotopy_group_succ_in Y k),
end end
end
| (k, fin.mk (l+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
end
/-
Fibration sequences
This is a similar construction, but with as input data two pointed maps,
and a pointed equivalence between the domain of the second map and the fiber of the first map,
and a pointed homotopy.
-/
section
universe variable u
parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F)
(p : ppoint f ~* g ∘* e)
include f p
open succ_str prod nat
definition fibration_sequence_car [reducible] : +3 → Type*
| (n, fin.mk 0 H) := Ω[n] Y
| (n, fin.mk 1 H) := Ω[n] X
| (n, fin.mk k H) := Ω[n] F
definition fibration_sequence_fun
: Π(n : +3), fibration_sequence_car (S n) →* fibration_sequence_car n
| (n, fin.mk 0 H) := proof Ω→[n] f qed
| (n, fin.mk 1 H) := proof Ω→[n] g qed
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* loop_space_succ_in Y n qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fibration_sequence_pequiv : Π(x : +3),
loop_spaces2 f x ≃* fibration_sequence_car x
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fibration_sequence_fun_phomotopy : Π(x : +3),
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) :=
begin refine !pid_comp ⬝* _, refine apn_phomotopy n p ⬝* _,
refine !apn_compose ⬝* _, reflexivity end
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !comp_pid⁻¹*, apply pwhisker_right,
refine _ ⬝* !apn_compose⁻¹*, reflexivity end
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition type_fibration_sequence [constructor] : type_chain_complex +3 :=
transfer_type_chain_complex
(LES_of_loop_spaces2 f)
fibration_sequence_fun
fibration_sequence_pequiv
fibration_sequence_fun_phomotopy
definition is_exact_type_fibration_sequence : is_exact_t type_fibration_sequence :=
begin
intro n,
apply is_exact_at_t_transfer,
apply is_exact_LES_of_loop_spaces2
end
definition fibration_sequence [constructor] : chain_complex +3 :=
trunc_chain_complex type_fibration_sequence
end
end chain_complex