113 lines
3.5 KiB
Text
113 lines
3.5 KiB
Text
|
/-
|
|||
|
Simulating classical reasoning without assuming excluded middle.
|
|||
|
The idea is to use the double-negation translation.
|
|||
|
We define several "helper" theorems for double negated formulas.
|
|||
|
-/
|
|||
|
variables {p q r : Prop}
|
|||
|
|
|||
|
theorem not_and_of_or_not : ¬p ∨ ¬q → ¬(p ∧ q) :=
|
|||
|
λ h hpq, or.elim h
|
|||
|
(λ hnp : ¬p, absurd (and.elim_left hpq) hnp)
|
|||
|
(λ hnq : ¬q, absurd (and.elim_right hpq) hnq)
|
|||
|
|
|||
|
theorem not_or_elim_left : ¬(p ∨ q) → ¬p :=
|
|||
|
λ hpq hp, absurd (or.inl hp) hpq
|
|||
|
|
|||
|
theorem not_or_elim_right : ¬(p ∨ q) → ¬q :=
|
|||
|
λ hpq hq, absurd (or.inr hq) hpq
|
|||
|
|
|||
|
theorem not_imp_elim_right : ¬(p → q) → ¬q :=
|
|||
|
λ h₁ hq, absurd (λ h, hq) h₁
|
|||
|
|
|||
|
theorem not_imp_elim_left : ¬(p → q) → ¬¬p :=
|
|||
|
λ h₁ hnp, absurd (λ hp, by contradiction) h₁
|
|||
|
|
|||
|
theorem not_imp_intro : ¬¬p → ¬q → ¬(p → q) :=
|
|||
|
λ hnnp hnq hpq,
|
|||
|
have hnp : ¬ p, from λ hp, absurd (hpq hp) hnq,
|
|||
|
absurd hnp hnnp
|
|||
|
|
|||
|
/- Double negation introduction -/
|
|||
|
theorem nn_intro : p → ¬¬p :=
|
|||
|
λ hp hnp, absurd hp hnp
|
|||
|
|
|||
|
/- Double negated implication -/
|
|||
|
-- Introduction
|
|||
|
theorem nn_imp_intro : (¬¬p → ¬¬q) → ¬¬(p → q) :=
|
|||
|
λ h hnpq,
|
|||
|
have hnnp : ¬¬p, from not_imp_elim_left hnpq,
|
|||
|
have hnq : ¬q, from not_imp_elim_right hnpq,
|
|||
|
have hnnq : ¬¬q, from h hnnp,
|
|||
|
absurd hnq hnnq
|
|||
|
|
|||
|
-- Elimination (modus ponens)
|
|||
|
theorem nn_mp : ¬¬(p → q) → p → ¬¬q :=
|
|||
|
λ hpq hp hnq,
|
|||
|
have aux : ¬(p → q), from not_imp_intro (nn_intro hp) hnq,
|
|||
|
absurd aux hpq
|
|||
|
|
|||
|
-- Double negated modus tollens
|
|||
|
theorem nn_mt : ¬¬(p → q) → ¬q → ¬p :=
|
|||
|
λ hpq hnq hp, absurd hnq (nn_mp hpq hp)
|
|||
|
|
|||
|
/- Double negated disjuction -/
|
|||
|
lemma not_or_of_not_of_not : ¬p → ¬q → ¬(p ∨ q) :=
|
|||
|
λ hnp hnq hpq, or.elim hpq (λ hp, absurd hp hnp) (λ hq, absurd hq hnq)
|
|||
|
|
|||
|
-- Elimination
|
|||
|
theorem nn_or_elim : ¬¬(p ∨ q) → (p → ¬¬r) → (q → ¬¬r) → ¬¬r :=
|
|||
|
λ hpq hpr hqr hnr,
|
|||
|
have hnp : ¬p, from λhp, absurd hnr (hpr hp),
|
|||
|
have hnq : ¬q, from λhq, absurd hnr (hqr hq),
|
|||
|
have aux : ¬(p ∨ q), from not_or_of_not_of_not hnp hnq,
|
|||
|
absurd aux hpq
|
|||
|
|
|||
|
-- Introduction
|
|||
|
theorem nn_or_inl : ¬¬p → ¬¬(p ∨ q) :=
|
|||
|
λ h hnpq, absurd (not_or_elim_left hnpq) h
|
|||
|
|
|||
|
theorem nn_or_inr : ¬¬q → ¬¬(p ∨ q) :=
|
|||
|
λ h hnpq, absurd (not_or_elim_right hnpq) h
|
|||
|
|
|||
|
/- Double negated conjunction -/
|
|||
|
|
|||
|
-- Elimination
|
|||
|
theorem nn_and_elim_left : ¬¬(p ∧ q) → ¬¬p :=
|
|||
|
λ h hnp, absurd (not_and_of_or_not (or.inl hnp)) h
|
|||
|
|
|||
|
theorem nn_and_elim_right : ¬¬(p ∧ q) → ¬¬q :=
|
|||
|
λ h hnq, absurd (not_and_of_or_not (or.inr hnq)) h
|
|||
|
|
|||
|
-- Introduction
|
|||
|
theorem nn_and_intro : ¬¬p → ¬¬q → ¬¬(p ∧ q) :=
|
|||
|
λ hnnp hnnq hnpq,
|
|||
|
have h₁ : ¬(p → ¬q), from not_imp_intro hnnp hnnq,
|
|||
|
have h₂ : p → ¬q, from λ hp hq, absurd (and.intro hp hq) hnpq,
|
|||
|
absurd h₂ h₁
|
|||
|
|
|||
|
/- Double negated excluded middle -/
|
|||
|
theorem nn_em : ¬¬(p ∨ ¬p) :=
|
|||
|
λ hn,
|
|||
|
have hnp : ¬p, from not_or_elim_left hn,
|
|||
|
have hnnp : ¬¬p, from not_or_elim_right hn,
|
|||
|
absurd hnp hnnp
|
|||
|
|
|||
|
/- Examples: the following two examples are classically valid.
|
|||
|
We can "simulate" the classical proofs using double negation.
|
|||
|
-/
|
|||
|
example : ¬¬((p → q) → (¬p ∨ q)) :=
|
|||
|
nn_imp_intro (λ h, nn_or_elim (@nn_em p)
|
|||
|
(λ hp : p,
|
|||
|
have hnnq : ¬¬q, from nn_mp h hp,
|
|||
|
nn_or_inr hnnq)
|
|||
|
(λ hnp : ¬p, nn_intro (or.inl hnp)))
|
|||
|
|
|||
|
/- "Prove" Peirce's law -/
|
|||
|
example : ¬¬(((p → q) → p) → p) :=
|
|||
|
nn_imp_intro (λ h, nn_or_elim (@nn_em p)
|
|||
|
(λ hp : p, nn_intro hp)
|
|||
|
(λ hnp : ¬p,
|
|||
|
have h₁ : ¬(p → q), from nn_mt h hnp,
|
|||
|
have hnnp : ¬¬p, from not_imp_elim_left h₁,
|
|||
|
absurd hnp hnnp))
|