lean2/tests/lean/run/tree2.lean

67 lines
2 KiB
Text
Raw Normal View History

import logic data.prod
open eq.ops prod tactic
inductive tree (A : Type) :=
| leaf : A → tree A
| node : tree A → tree A → tree A
inductive one1.{l} : Type.{max 1 l} :=
star : one1
set_option pp.universes true
namespace tree
namespace manual
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
tree.rec_on t (λ a, one1.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : tree A → Type.{l₂}}
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
tree.rec_on t
(λa, (H (leaf a) one1.star, one1.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
have c : C (node l r), from
H (node l r) b,
(c, b)),
pr₁ general
end
end manual
check tree.no_confusion
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
assume h : leaf a = node l r,
tree.no_confusion h
constant A : Type₁
constants l₁ l₂ r₁ r₂ : tree A
axiom node_eq : node l₁ r₁ = node l₂ r₂
check tree.no_confusion node_eq
definition tst : (l₁ = l₂ → r₁ = r₂ → l₁ = l₂) → l₁ = l₂ := tree.no_confusion node_eq
check tst (λ e₁ e₂, e₁)
theorem node.inj1 {A : Type} (l₁ l₂ r₁ r₂ : tree A) : node l₁ r₁ = node l₂ r₂ → l₁ = l₂ :=
assume h,
have trivial : (l₁ = l₂ → r₁ = r₂ → l₁ = l₂) → l₁ = l₂, from tree.no_confusion h,
trivial (λ e₁ e₂, e₁)
theorem node.inj2 {A : Type} (l₁ l₂ r₁ r₂ : tree A) : node l₁ r₁ = node l₂ r₂ → l₁ = l₂ :=
begin
intro h,
apply (tree.no_confusion h),
intros, assumption
end
end tree