2015-12-09 05:11:11 +00:00
|
|
|
open eq
|
2014-12-21 23:19:25 +00:00
|
|
|
|
|
|
|
theorem trans {A : Type} {a b c : A} (h₁ : a = b) (h₂ : b = c) : a = c :=
|
|
|
|
begin
|
|
|
|
cases h₁, cases h₂, apply rfl
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem symm {A : Type} {a b : A} (h₁ : a = b) : b = a :=
|
|
|
|
begin
|
|
|
|
cases h₁, apply rfl
|
|
|
|
end
|
|
|
|
|
2015-05-02 20:01:37 +00:00
|
|
|
theorem congr2 {A B : Type} (f : A → B) {a₁ a₂ : A} (h : a₁ = a₂) : f a₁ = f a₂ :=
|
2014-12-21 23:19:25 +00:00
|
|
|
begin
|
|
|
|
cases h, apply rfl
|
|
|
|
end
|
|
|
|
|
|
|
|
definition inv_pV_2 {A : Type} {x y z : A} (p : x = y) (q : z = y) : (p ⬝ q⁻¹)⁻¹ = q ⬝ p⁻¹ :=
|
|
|
|
begin
|
|
|
|
cases p, cases q, apply rfl
|
|
|
|
end
|