2015-01-06 19:55:31 +00:00
|
|
|
open nat
|
|
|
|
|
|
|
|
inductive tree (A : Type) :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| leaf : A → tree A
|
|
|
|
| node : tree_list A → tree A
|
2015-01-06 19:55:31 +00:00
|
|
|
with tree_list :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| nil : tree_list A
|
|
|
|
| cons : tree A → tree_list A → tree_list A
|
2015-01-06 19:55:31 +00:00
|
|
|
|
|
|
|
namespace tree_list
|
|
|
|
|
2015-02-26 00:20:44 +00:00
|
|
|
definition len {A : Type} : tree_list A → nat
|
2016-05-29 16:20:18 +00:00
|
|
|
| len (nil _) := 0
|
2015-02-26 00:20:44 +00:00
|
|
|
| len (cons t l) := len l + 1
|
2015-01-06 19:55:31 +00:00
|
|
|
|
|
|
|
theorem len_nil {A : Type} : len (nil A) = 0 :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem len_cons {A : Type} (t : tree A) (l : tree_list A) : len (cons t l) = len l + 1 :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
variables (A : Type) (t1 t2 t3 : tree A)
|
|
|
|
|
|
|
|
example : len (cons t1 (cons t2 (cons t3 (nil A)))) = 3 :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
print definition len
|
|
|
|
|
|
|
|
end tree_list
|