38 lines
1 KiB
Text
38 lines
1 KiB
Text
|
Variable N : Type
|
|||
|
Variable h : N -> N -> N
|
|||
|
|
|||
|
(* Specialize congruence theorem for h-applications *)
|
|||
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
|||
|
Congr (Congr (Refl h) H1) H2
|
|||
|
|
|||
|
(* Declare some variables *)
|
|||
|
Variable a : N
|
|||
|
Variable b : N
|
|||
|
Variable c : N
|
|||
|
Variable d : N
|
|||
|
Variable e : N
|
|||
|
|
|||
|
(* Add axioms stating facts about these variables *)
|
|||
|
Axiom H1 : (a = b ∧ b = c) ∨ (a = d ∧ d = c)
|
|||
|
Axiom H2 : b = e
|
|||
|
|
|||
|
(* Proof that (h a b) = (h c e) *)
|
|||
|
Theorem T1 : (h a b) = (h c e) :=
|
|||
|
DisjCases H1
|
|||
|
(fun C1 : _,
|
|||
|
CongrH (Trans (Conjunct1 C1) (Conjunct2 C1)) H2)
|
|||
|
(fun C2 : _,
|
|||
|
CongrH (Trans (Conjunct1 C2) (Conjunct2 C2)) H2)
|
|||
|
|
|||
|
(* We can use theorem T1 to prove other theorems *)
|
|||
|
Theorem T2 : (h a (h a b)) = (h a (h c e)) :=
|
|||
|
CongrH (Refl a) T1
|
|||
|
|
|||
|
(* Display the last two objects (i.e., theorems) added to the environment *)
|
|||
|
Show Environment 2
|
|||
|
|
|||
|
(* Show implicit arguments *)
|
|||
|
Set lean::pp::implicit true
|
|||
|
Set pp::width 150
|
|||
|
Show Environment 2
|