lean2/hott/types/pointed.hlean

306 lines
9.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
import arity .eq .bool .unit .sigma
open is_trunc eq prod sigma nat equiv option is_equiv bool unit
2014-12-12 04:14:53 +00:00
structure pointed [class] (A : Type) :=
2014-12-12 04:14:53 +00:00
(point : A)
structure Pointed :=
{carrier : Type}
(Point : carrier)
open Pointed
notation `Type*` := Pointed
namespace pointed
attribute Pointed.carrier [coercion]
variables {A B : Type}
definition pt [unfold 2] [H : pointed A] := point A
protected definition Mk [constructor] := @Pointed.mk
protected definition MK [constructor] (A : Type) (a : A) := Pointed.mk a
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
Pointed.mk (point A)
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
pointed.mk (Point A)
2014-12-12 04:14:53 +00:00
-- Any contractible type is pointed
definition pointed_of_is_contr [instance] [priority 800] [constructor]
(A : Type) [H : is_contr A] : pointed A :=
pointed.mk !center
2014-12-12 04:14:53 +00:00
-- A pi type with a pointed target is pointed
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
: pointed (Πx, P x) :=
pointed.mk (λx, pt)
2014-12-12 04:14:53 +00:00
-- A sigma type of pointed components is pointed
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
[H : pointed (P pt)] : pointed (Σx, P x) :=
pointed.mk ⟨pt,pt⟩
2014-12-12 04:14:53 +00:00
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
: pointed (A × B) :=
pointed.mk (pt,pt)
2014-12-12 04:14:53 +00:00
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
2014-12-12 04:14:53 +00:00
definition pointed_bool [instance] [constructor] : pointed bool :=
pointed.mk ff
definition Bool [constructor] : Type* :=
pointed.mk' bool
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition Loop_space [reducible] [constructor] (A : Type*) : Type* :=
pointed.mk' (point A = point A)
-- definition Iterated_loop_space : Type* → → Type*
-- | Iterated_loop_space A 0 := A
-- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n
definition Iterated_loop_space [unfold 1] [reducible] (n : ) (A : Type*) : Type* :=
nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A
prefix `Ω`:(max+5) := Loop_space
notation `Ω[`:95 n:0 `] `:0 A:95 := Iterated_loop_space n A
definition refln [constructor] {A : Type*} {n : } : Ω[n] A := pt
definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
open equiv.ops
definition Pointed_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apd011 @Pointed.mk,
{ apply ua f},
{ rewrite [cast_ua,p]},
end
protected definition Pointed.sigma_char.{u} : Pointed.{u} ≃ Σ(X : Type.{u}), X :=
begin
fapply equiv.MK,
{ intro x, induction x with X x, exact ⟨X, x⟩},
{ intro x, induction x with X x, exact pointed.MK X x},
{ intro x, induction x with X x, reflexivity},
{ intro x, induction x with X x, reflexivity},
end
definition add_point [constructor] (A : Type) : Type* :=
Pointed.mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed
open pointed
structure pmap (A B : Type*) :=
(map : A → B)
(resp_pt : map (Point A) = Point B)
open pmap
namespace pointed
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
notation `map₊` := pmap
infix ` →* `:30 := pmap
attribute pmap.map [coercion]
variables {A B C D : Type*} {f g h : A →* B}
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
begin
cases f with f p, cases g with g q,
esimp at *,
fapply apo011 pmap.mk,
{ exact eq_of_homotopy r},
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]}
end
definition pid [constructor] (A : Type*) : A →* A :=
pmap.mk function.id idp
definition pcompose [constructor] (g : B →* C) (f : A →* B) : A →* C :=
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
infixr ` ∘* `:60 := pcompose
structure phomotopy (f g : A →* B) :=
(homotopy : f ~ g)
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
infix ` ~* `:50 := phomotopy
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
phomotopy.homotopy p
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
begin
fconstructor, intro a, reflexivity,
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
esimp at *,
induction pf, induction pg, induction ph, reflexivity
end
definition pid_comp (f : A →* B) : pid B ∘* f ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ esimp, exact !idp_con ⬝ !ap_id⁻¹}
end
definition comp_pid (f : A →* B) : f ∘* pid A ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- definition Loop_space_functor (f : A →* B) : Ω A →* Ω B :=
-- begin
-- fapply pmap.mk,
-- { intro p, exact ap f p},
-- end
-- set_option pp.notation false
-- definition pmap_equiv_right (A : Type*) (B : Type)
-- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) :=
-- begin
-- fapply equiv.MK,
-- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a},
-- { intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
-- intro a, esimp, exact f a,
-- reflexivity},
-- { intro f, reflexivity},
-- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p,
-- esimp, apply sorry
-- }
-- end
definition pmap_bool_equiv (B : Type*) : map₊ Bool B ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fconstructor,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
definition apn [unfold 3] (n : ) (f : map₊ A B) : Ω[n] A →* Ω[n] B :=
begin
revert A B f, induction n with n IH,
{ intros A B f, exact f},
{ intros A B f, esimp, apply IH (Ω A),
{ esimp, fconstructor,
intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt,
esimp, apply con.left_inv}}
end
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := apn (succ 0) f
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
begin
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
induction pg, induction pf,
fconstructor,
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
{ reflexivity}
end
protected definition phomotopy.refl [refl] (f : A →* B) : f ~* f :=
begin
fconstructor,
{ intro a, exact idp},
{ apply idp_con}
end
protected definition phomotopy.trans [trans] (p : f ~* g) (q : g ~* h)
: f ~* h :=
begin
fconstructor,
{ intro a, exact p a ⬝ q a},
{ induction f, induction g, induction p with p p', induction q with q q', esimp at *,
induction p', induction q', esimp, apply con.assoc}
end
protected definition phomotopy.symm [symm] (p : f ~* g) : g ~* f :=
begin
fconstructor,
{ intro a, exact (p a)⁻¹},
{ induction f, induction p with p p', esimp at *,
induction p', esimp, apply inv_con_cancel_left}
end
infix ` ⬝* `:75 := phomotopy.trans
postfix `⁻¹*`:(max+1) := phomotopy.symm
definition eq_of_phomotopy (p : f ~* g) : f = g :=
begin
fapply pmap_eq,
{ intro a, exact p a},
{ exact !to_homotopy_pt⁻¹}
end
definition pwhisker_left (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
begin
fconstructor,
{ intro a, exact ap h (p a)},
{ induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity}
end
definition pwhisker_right (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
begin
fconstructor,
{ intro a, exact p (h a)},
{ induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
exact !idp_con⁻¹}
end
structure pequiv (A B : Type*) :=
(to_pmap : A →* B)
(is_equiv_to_pmap : is_equiv to_pmap)
infix ` ≃* `:25 := pequiv
attribute pequiv.to_pmap [coercion]
attribute pequiv.is_equiv_to_pmap [instance]
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
equiv.mk f _
end pointed