lean2/src/builtin/Nat.lean

85 lines
3.1 KiB
Text
Raw Normal View History

Import kernel.
Variable Nat : Type.
Alias : Nat.
Namespace Nat.
Builtin numeral.
Builtin add : Nat → Nat → Nat.
Infixl 65 + : add.
Builtin mul : Nat → Nat → Nat.
Infixl 70 * : mul.
Builtin le : Nat → Nat → Bool.
Infix 50 <= : le.
Infix 50 ≤ : le.
Definition ge (a b : Nat) := b ≤ a.
Infix 50 >= : ge.
Infix 50 ≥ : ge.
Definition lt (a b : Nat) := ¬ (a ≥ b).
Infix 50 < : lt.
Definition gt (a b : Nat) := ¬ (a ≤ b).
Infix 50 > : gt.
Definition id (a : Nat) := a.
Notation 55 | _ | : id.
Axiom PlusZero (a : Nat) : a + 0 = a.
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
Axiom Induction {P : Nat → Bool} (Hb : P 0) (Hi : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
Theorem ZeroPlus (a : Nat) : 0 + a = a
:= Induction (show 0 + 0 = 0, Trivial)
(λ (n : Nat) (Hi : 0 + n = n),
let L1 : 0 + (n + 1) = (0 + n) + 1 := PlusSucc 0 n
in show 0 + (n + 1) = n + 1, Subst L1 Hi)
a.
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
:= Induction (show (a + 1) + 0 = (a + 0) + 1,
(Subst (PlusZero (a + 1)) (Symm (PlusZero a))))
(λ (n : Nat) (Hi : (a + 1) + n = (a + n) + 1),
let L1 : (a + 1) + (n + 1) = ((a + 1) + n) + 1 := PlusSucc (a + 1) n,
L2 : (a + 1) + (n + 1) = ((a + n) + 1) + 1 := Subst L1 Hi,
L3 : (a + n) + 1 = a + (n + 1) := Symm (PlusSucc a n)
in show (a + 1) + (n + 1) = (a + (n + 1)) + 1, Subst L2 L3)
b.
Theorem PlusComm (a b : Nat) : a + b = b + a
:= Induction (show a + 0 = 0 + a,
let L1 : a + 0 = a := PlusZero a,
L2 : a = 0 + a := Symm (ZeroPlus a)
in Trans L1 L2)
(λ (n : Nat) (Hi : a + n = n + a),
let L1 : a + (n + 1) = (a + n) + 1 := PlusSucc a n,
L2 : a + (n + 1) = (n + a) + 1 := Subst L1 Hi,
L3 : (n + a) + 1 = (n + 1) + a := Symm (SuccPlus n a)
in show a + (n + 1) = (n + 1) + a, Trans L2 L3)
b.
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
:= Induction (show 0 + (b + c) = (0 + b) + c,
Subst (ZeroPlus (b + c)) (Symm (ZeroPlus b)))
(λ (n : Nat) (Hi : n + (b + c) = (n + b) + c),
let L1 : (n + 1) + (b + c) = (n + (b + c)) + 1 := SuccPlus n (b + c),
L2 : (n + 1) + (b + c) = ((n + b) + c) + 1 := Subst L1 Hi,
L3 : ((n + b) + 1) + c = ((n + b) + c) + 1 := SuccPlus (n + b) c,
L4 : (n + b) + 1 = (n + 1) + b := Symm (SuccPlus n b),
L5 : ((n + 1) + b) + c = ((n + b) + c) + 1 := Subst L3 L4,
L6 : ((n + b) + c) + 1 = ((n + 1) + b) + c := Symm L5
in show (n + 1) + (b + c) = ((n + 1) + b) + c, Trans L2 L6)
a.
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
SetOpaque ge true.
SetOpaque lt true.
SetOpaque gt true.
SetOpaque id true.
EndNamespace.