2015-05-18 21:06:29 +00:00
urec.lean:3:0: error: invalid user defined recursor, result type must be of the form (C t), where C is a bound variable, and t is a (possibly empty) sequence of bound variables
2015-05-12 21:52:04 +00:00
urec.lean:5:0: error: invalid user defined recursor, 'nat.rec' is a builtin recursor
2015-05-18 21:06:29 +00:00
urec.lean:19:0: error: invalid user defined recursor, type of the major premise 'a' must be for the form (I ...), where I is a constant
2015-05-12 21:52:04 +00:00
myrec.{l_1 l_2} :
Π (A : Type.{l_1}) (M : list.{l_1} A → Type.{l_2}) (l : list.{l_1} A),
M (@nil.{l_1} A) → (Π (a : A), M [a]) → (Π (a₁ a₂ : A), M [a₁, a₂]) → M l
2015-05-12 22:08:10 +00:00
recursor information
2015-05-18 21:06:29 +00:00
num. parameters: 1
num. indices: 0
motive univ. pos.: 1
motive pos.: 2
major premise pos.: 3
dep. elimination: 1
parameters pos. at major: 1
2015-05-12 22:08:10 +00:00
recursor information
2015-05-18 21:06:29 +00:00
num. parameters: 0
num. indices: 0
2015-05-12 22:08:10 +00:00
recursor eliminate only to Prop
2015-05-18 21:06:29 +00:00
motive pos.: 1
major premise pos.: 2
dep. elimination: 1
2015-05-12 22:08:10 +00:00
vector.induction_on.{l_1} :
∀ {A : Type.{l_1}} {C : Π (a : nat), vector.{l_1} A a → Prop} {a : nat} (n : vector.{l_1} A a),
C nat.zero (@vector.nil.{l_1} A) →
(∀ {n : nat} (a : A) (a_1 : vector.{l_1} A n), C n a_1 → C (nat.succ n) (@vector.cons.{l_1} A n a a_1)) →
C a n
recursor information
2015-05-18 21:06:29 +00:00
num. parameters: 1
num. indices: 1
2015-05-12 22:08:10 +00:00
recursor eliminate only to Prop
2015-05-18 21:06:29 +00:00
motive pos.: 2
major premise pos.: 4
dep. elimination: 1
parameters pos. at major: 1
indices pos. at major: 2
2015-05-12 22:08:10 +00:00
Exists.rec.{l_1} :
∀ {A : Type.{l_1}} {P : A → Prop} {C : Prop},
(∀ (a : A), P a → C) → @Exists.{l_1} A P → C
recursor information
2015-05-18 21:06:29 +00:00
num. parameters: 2
num. indices: 0
2015-05-12 22:08:10 +00:00
recursor eliminate only to Prop
2015-05-18 21:06:29 +00:00
motive pos.: 3
major premise pos.: 5
dep. elimination: 0
parameters pos. at major: 1 2