40 lines
1.1 KiB
Text
40 lines
1.1 KiB
Text
|
/-
|
||
|
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Authors: Ulrik Buchholtz, Egbert Rijke
|
||
|
|
||
|
The H-space structure on S¹ and the complex Hopf fibration
|
||
|
(the standard one).
|
||
|
-/
|
||
|
|
||
|
import .hopf .circle
|
||
|
|
||
|
open eq equiv is_equiv circle is_conn trunc is_trunc sphere_index sphere susp
|
||
|
|
||
|
namespace hopf
|
||
|
|
||
|
definition circle_h_space [instance] : h_space S¹ :=
|
||
|
⦃ h_space, one := base, mul := circle_mul,
|
||
|
one_mul := circle_base_mul, mul_one := circle_mul_base ⦄
|
||
|
|
||
|
definition circle_assoc (x y z : S¹) : (x * y) * z = x * (y * z) :=
|
||
|
begin
|
||
|
induction x,
|
||
|
{ reflexivity },
|
||
|
{ apply eq_pathover, induction y,
|
||
|
{ exact natural_square_tr
|
||
|
(λa : S¹, ap (λb : S¹, b * z) (circle_mul_base a))
|
||
|
loop },
|
||
|
{ apply is_prop.elimo, apply is_trunc_square } }
|
||
|
end
|
||
|
|
||
|
open sphere.ops function
|
||
|
|
||
|
definition complex_hopf : S 3 → S 2 :=
|
||
|
begin
|
||
|
intro x, apply @sigma.pr1 (susp S¹) (hopf S¹),
|
||
|
apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x
|
||
|
end
|
||
|
|
||
|
end hopf
|