lean2/library/data/stream.lean

143 lines
4.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.nat
open nat
definition stream (A : Type) := nat → A
namespace stream
variables {A B C : Type}
definition cons (a : A) (s : stream A) : stream A :=
λ i,
match i with
| 0 := a
| succ n := s n
end
definition head (s : stream A) : A :=
s 0
definition tail (s : stream A) : stream A :=
λ i, s (i+1)
definition nth_tail (n : nat) (s : stream A) : stream A :=
λ i, s (i+n)
definition nth (n : nat) (s : stream A) : A :=
s n
protected theorem eta (s : stream A) : cons (head s) (tail s) = s :=
funext (λ i, begin cases i, repeat reflexivity end)
theorem tail_nth_tail (n : nat) (s : stream A) : tail (nth_tail n s) = nth_tail n (tail s) :=
funext (λ i, begin esimp [tail, nth_tail], congruence, rewrite add.right_comm end)
theorem nth_nth_tail (n m : nat) (s : stream A) : nth n (nth_tail m s) = nth (n+m) s :=
rfl
theorem nth_tail_nth_tail (n m : nat) (s : stream A) : nth_tail n (nth_tail m s) = nth_tail (n+m) s :=
funext (λ i, begin esimp [nth_tail], rewrite add.assoc end)
theorem nth_succ (n : nat) (s : stream A) : nth (succ n) s = nth n (tail s) :=
rfl
protected theorem ext {s₁ s₂ : stream A} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ :=
assume h, funext h
protected definition all (p : A → Prop) (s : stream A) := ∀ n, p (nth n s)
protected definition any (p : A → Prop) (s : stream A) := ∃ n, p (nth n s)
theorem all_def (p : A → Prop) (s : stream A) : stream.all p s = ∀ n, p (nth n s) :=
rfl
theorem any_def (p : A → Prop) (s : stream A) : stream.any p s = ∃ n, p (nth n s) :=
rfl
section map
variable (f : A → B)
definition map (s : stream A) : stream B :=
λ n, f (nth n s)
theorem nth_tail_map (n : nat) (s : stream A) : nth_tail n (map f s) = map f (nth_tail n s) :=
stream.ext (λ i, rfl)
theorem nth_map (n : nat) (s : stream A) : nth n (map f s) = f (nth n s) :=
rfl
end map
section zip
variable (f : A → B → C)
definition zip (s₁ : stream A) (s₂ : stream B) : stream C :=
λ n, f (nth n s₁) (nth n s₂)
theorem nth_tail_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : nth_tail n (zip f s₁ s₂) = zip f (nth_tail n s₁) (nth_tail n s₂) :=
stream.ext (λ i, rfl)
theorem nth_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : nth n (zip f s₁ s₂) = f (nth n s₁) (nth n s₂) :=
rfl
end zip
definition repeat (a : A) : stream A :=
λ n, a
theorem nth_repeat (n : nat) (a : A) : nth n (repeat a) = a :=
rfl
theorem nth_tail_repeat (n : nat) (a : A) : nth_tail n (repeat a) = repeat a :=
stream.ext (λ i, rfl)
definition iterate (f : A → A) (a : A) : stream A :=
λ n, nat.rec_on n a (λ n r, f r)
theorem head_iterate (f : A → A) (a : A) : head (iterate f a) = a :=
rfl
theorem tail_iterate (f : A → A) (a : A) : tail (iterate f a) = iterate f (f a) :=
begin
apply funext, intro n,
induction n with n' IH,
{reflexivity},
{esimp [tail, iterate] at *,
rewrite add_one at *,
esimp at *, rewrite IH}
end
theorem nth_zero_iterate (f : A → A) (a : A) : nth 0 (iterate f a) = a :=
rfl
theorem nth_succ_iterate (n : nat) (f : A → A) (a : A) : nth (succ n) (iterate f a) = nth n (iterate f (f a)) :=
by rewrite [nth_succ, tail_iterate]
theorem map_iterate (f : A → A) (a : A) : iterate f (f a) = map f (iterate f a) :=
begin
apply funext, intro n,
induction n with n' IH,
{reflexivity},
{esimp [map, iterate, nth] at *,
rewrite IH}
end
section bisim
variable {R : stream A → stream A → Prop}
local infix ~ := R
premise (bisim : ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂)
lemma nth_of_bisim : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ nth_tail (n+1) s₁ ~ nth_tail (n+1) s₂
| s₁ s₂ 0 h := bisim h
| s₁ s₂ (n+1) h :=
obtain h₁ (trel : tail s₁ ~ tail s₂), from bisim h,
nth_of_bisim n trel
-- If two streams are bisimilar, then they are equal
theorem eq_of_bisim : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ :=
λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim bisim n r))
end bisim
end stream