lean2/hott/algebra/category/colimits.hlean

326 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Colimits in a category
-/
import .limits .constructions.opposite
open is_trunc functor nat_trans eq
-- we define colimits to be the dual of a limit
namespace category
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
include C
definition is_initial [reducible] (c : ob) := @is_terminal _ (opposite C) c
definition is_contr_of_is_initial [instance] (c d : ob) [H : is_initial d]
: is_contr (d ⟶ c) :=
H c
definition initial_morphism (c c' : ob) [H : is_initial c'] : c' ⟶ c :=
!center
definition hom_initial_eq [H : is_initial c'] (f f' : c' ⟶ c) : f = f' :=
!is_hprop.elim
definition eq_initial_morphism [H : is_initial c'] (f : c' ⟶ c) : f = initial_morphism c c' :=
!is_hprop.elim
definition initial_iso_initial {c c' : ob} (H : is_initial c) (K : is_initial c') : c ≅ c' :=
iso_of_opposite_iso (@terminal_iso_terminal _ (opposite C) _ _ H K)
theorem is_hprop_is_initial [instance] : is_hprop (is_initial c) := _
omit C
definition has_initial_object [reducible] : Type := has_terminal_object Dᵒᵖ
definition initial_object [unfold 2] [reducible] [H : has_initial_object D] : D :=
has_terminal_object.d Dᵒᵖ
definition has_initial_object.is_initial [H : has_initial_object D]
: is_initial (initial_object D) :=
@has_terminal_object.is_terminal (Opposite D) H
variable {D}
definition initial_object_iso_initial_object (H₁ H₂ : has_initial_object D)
: @initial_object D H₁ ≅ @initial_object D H₂ :=
initial_iso_initial (@has_initial_object.is_initial D H₁) (@has_initial_object.is_initial D H₂)
set_option pp.coercions true
theorem is_hprop_has_initial_object [instance] (D : Category)
: is_hprop (has_initial_object D) :=
is_hprop_has_terminal_object (Category_opposite D)
variable (D)
abbreviation has_colimits_of_shape := has_limits_of_shape Dᵒᵖ Iᵒᵖ
/-
The next definitions states that a category is cocomplete with respect to diagrams
in a certain universe. "is_cocomplete.{o₁ h₁ o₂ h₂}" means that D is cocomplete
with respect to diagrams of type Precategory.{o₂ h₂}
-/
abbreviation is_cocomplete (D : Precategory) := is_complete Dᵒᵖ
definition has_colimits_of_shape_of_is_cocomplete [instance] [H : is_cocomplete D]
(I : Precategory) : has_colimits_of_shape D I := H Iᵒᵖ
section
open pi
theorem is_hprop_has_colimits_of_shape [instance] (D : Category) (I : Precategory)
: is_hprop (has_colimits_of_shape D I) :=
is_hprop_has_limits_of_shape (Category_opposite D) _
theorem is_hprop_is_cocomplete [instance] (D : Category) : is_hprop (is_cocomplete D) :=
is_hprop_is_complete (Category_opposite D)
end
variables {D I} (F : I ⇒ D) [H : has_colimits_of_shape D I] {i j : I}
include H
abbreviation cocone := (cone Fᵒᵖ)ᵒᵖ
definition has_initial_object_cocone [H : has_colimits_of_shape D I]
(F : I ⇒ D) : has_initial_object (cocone F) :=
begin
unfold [has_colimits_of_shape,has_limits_of_shape] at H,
exact H Fᵒᵖ
end
local attribute has_initial_object_cocone [instance]
definition colimit_cocone : cocone F := limit_cone Fᵒᵖ
definition is_initial_colimit_cocone [instance] : is_initial (colimit_cocone F) :=
is_terminal_limit_cone Fᵒᵖ
definition colimit_object : D :=
limit_object Fᵒᵖ
definition colimit_nat_trans : constant_functor Iᵒᵖ (colimit_object F) ⟹ Fᵒᵖ :=
limit_nat_trans Fᵒᵖ
definition colimit_morphism (i : I) : F i ⟶ colimit_object F :=
limit_morphism Fᵒᵖ i
variable {H}
theorem colimit_commute {i j : I} (f : i ⟶ j)
: colimit_morphism F j ∘ to_fun_hom F f = colimit_morphism F i :=
by rexact limit_commute Fᵒᵖ f
variable [H]
definition colimit_cone_obj [constructor] {d : D} {η : Πi, F i ⟶ d}
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : cone_obj Fᵒᵖ :=
limit_cone_obj Fᵒᵖ proof p qed
variable {H}
definition colimit_hom {d : D} (η : Πi, F i ⟶ d)
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : colimit_object F ⟶ d :=
hom_limit Fᵒᵖ η proof p qed
theorem colimit_hom_commute {d : D} (η : Πi, F i ⟶ d)
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) (i : I)
: colimit_hom F η p ∘ colimit_morphism F i = η i :=
by rexact hom_limit_commute Fᵒᵖ η proof p qed i
definition colimit_cone_hom [constructor] {d : D} {η : Πi, F i ⟶ d}
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
(q : Πi, h ∘ colimit_morphism F i = η i)
: cone_hom (colimit_cone_obj F p) (colimit_cocone F) :=
by rexact limit_cone_hom Fᵒᵖ proof p qed proof q qed
variable {F}
theorem eq_colimit_hom {d : D} {η : Πi, F i ⟶ d}
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
(q : Πi, h ∘ colimit_morphism F i = η i) : h = colimit_hom F η p :=
by rexact @eq_hom_limit _ _ Fᵒᵖ _ _ _ proof p qed _ proof q qed
theorem colimit_cocone_unique {d : D} {η : Πi, F i ⟶ d}
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i)
{h₁ : colimit_object F ⟶ d} (q₁ : Πi, h₁ ∘ colimit_morphism F i = η i)
{h₂ : colimit_object F ⟶ d} (q₂ : Πi, h₂ ∘ colimit_morphism F i = η i) : h₁ = h₂ :=
@limit_cone_unique _ _ Fᵒᵖ _ _ _ proof p qed _ proof q₁ qed _ proof q₂ qed
definition colimit_hom_colimit [reducible] {F G : I ⇒ D} (η : F ⟹ G)
: colimit_object F ⟶ colimit_object G :=
colimit_hom _ (λi, colimit_morphism G i ∘ η i)
abstract by intro i j f; rewrite [-assoc,-naturality,assoc,colimit_commute] end
omit H
variable (F)
definition colimit_object_iso_colimit_object [constructor] (H₁ H₂ : has_colimits_of_shape D I) :
@(colimit_object F) H₁ ≅ @(colimit_object F) H₂ :=
iso_of_opposite_iso (limit_object_iso_limit_object Fᵒᵖ H₁ H₂)
section bin_coproducts
open bool prod.ops
definition has_binary_coproducts [reducible] (D : Precategory) := has_colimits_of_shape D c2
variables [K : has_binary_coproducts D] (d d' : D)
include K
definition coproduct_object : D :=
colimit_object (c2_functor D d d')
infixr `+l`:27 := coproduct_object
local infixr + := coproduct_object
definition inl : d ⟶ d + d' :=
colimit_morphism (c2_functor D d d') ff
definition inr : d' ⟶ d + d' :=
colimit_morphism (c2_functor D d d') tt
variables {d d'}
definition coproduct_hom {x : D} (f : d ⟶ x) (g : d' ⟶ x) : d + d' ⟶ x :=
colimit_hom (c2_functor D d d') (bool.rec f g)
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_right)
theorem coproduct_hom_inl {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inl = f :=
colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ ff
theorem coproduct_hom_inr {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inr = g :=
colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ tt
theorem eq_coproduct_hom {x : D} {f : d ⟶ x} {g : d' ⟶ x} {h : d + d' ⟶ x}
(p : h ∘ !inl = f) (q : h ∘ !inr = g) : h = coproduct_hom f g :=
eq_colimit_hom _ (bool.rec p q)
theorem coproduct_cocone_unique {x : D} {f : d ⟶ x} {g : d' ⟶ x}
{h₁ : d + d' ⟶ x} (p₁ : h₁ ∘ !inl = f) (q₁ : h₁ ∘ !inr = g)
{h₂ : d + d' ⟶ x} (p₂ : h₂ ∘ !inl = f) (q₂ : h₂ ∘ !inr = g) : h₁ = h₂ :=
eq_coproduct_hom p₁ q₁ ⬝ (eq_coproduct_hom p₂ q₂)⁻¹
variable (D)
definition coproduct_functor [constructor] : D ×c D ⇒ D :=
functor.mk
(λx, coproduct_object x.1 x.2)
(λx y f, coproduct_hom (!inl ∘ f.1) (!inr ∘ f.2))
abstract begin intro x, symmetry, apply eq_coproduct_hom: apply id_comp_eq_comp_id end end
abstract begin intro x y z g f, symmetry, apply eq_coproduct_hom,
rewrite [-assoc,coproduct_hom_inl,assoc,coproduct_hom_inl,-assoc],
rewrite [-assoc,coproduct_hom_inr,assoc,coproduct_hom_inr,-assoc] end end
omit K
variables {D} (d d')
definition coproduct_object_iso_coproduct_object [constructor] (H₁ H₂ : has_binary_coproducts D) :
@coproduct_object D H₁ d d' ≅ @coproduct_object D H₂ d d' :=
colimit_object_iso_colimit_object _ H₁ H₂
end bin_coproducts
/-
intentionally we define coproducts in terms of colimits,
but coequalizers in terms of equalizers, to see which characterization is more useful
-/
section coequalizers
open bool prod.ops sum equalizer_category_hom
definition has_coequalizers [reducible] (D : Precategory) := has_equalizers Dᵒᵖ
variables [K : has_coequalizers D]
include K
variables {d d' x : D} (f g : d ⟶ d')
definition coequalizer_object : D :=
!(@equalizer_object Dᵒᵖ) f g
definition coequalizer : d' ⟶ coequalizer_object f g :=
!(@equalizer Dᵒᵖ)
theorem coequalizes : coequalizer f g ∘ f = coequalizer f g ∘ g :=
by rexact !(@equalizes Dᵒᵖ)
variables {f g}
definition coequalizer_hom (h : d' ⟶ x) (p : h ∘ f = h ∘ g) : coequalizer_object f g ⟶ x :=
!(@hom_equalizer Dᵒᵖ) proof p qed
theorem coequalizer_hom_coequalizer (h : d' ⟶ x) (p : h ∘ f = h ∘ g)
: coequalizer_hom h p ∘ coequalizer f g = h :=
by rexact !(@equalizer_hom_equalizer Dᵒᵖ)
theorem eq_coequalizer_hom {h : d' ⟶ x} (p : h ∘ f = h ∘ g) {i : coequalizer_object f g ⟶ x}
(q : i ∘ coequalizer f g = h) : i = coequalizer_hom h p :=
by rexact !(@eq_hom_equalizer Dᵒᵖ) proof q qed
theorem coequalizer_cocone_unique {h : d' ⟶ x} (p : h ∘ f = h ∘ g)
{i₁ : coequalizer_object f g ⟶ x} (q₁ : i₁ ∘ coequalizer f g = h)
{i₂ : coequalizer_object f g ⟶ x} (q₂ : i₂ ∘ coequalizer f g = h) : i₁ = i₂ :=
!(@equalizer_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof q₂ qed
omit K
variables (f g)
definition coequalizer_object_iso_coequalizer_object [constructor] (H₁ H₂ : has_coequalizers D) :
@coequalizer_object D H₁ _ _ f g ≅ @coequalizer_object D H₂ _ _ f g :=
iso_of_opposite_iso !(@equalizer_object_iso_equalizer_object Dᵒᵖ)
end coequalizers
section pushouts
open bool prod.ops sum pullback_category_hom
definition has_pushouts [reducible] (D : Precategory) := has_pullbacks Dᵒᵖ
variables [K : has_pushouts D]
include K
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₂) (g : d₁ ⟶ d₃)
definition pushout_object : D :=
!(@pullback_object Dᵒᵖ) f g
definition pushout : d₃ ⟶ pushout_object f g :=
!(@pullback Dᵒᵖ)
definition pushout_rev : d₂ ⟶ pushout_object f g :=
!(@pullback_rev Dᵒᵖ)
theorem pushout_commutes : pushout_rev f g ∘ f = pushout f g ∘ g :=
by rexact !(@pullback_commutes Dᵒᵖ)
variables {f g}
definition pushout_hom (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
: pushout_object f g ⟶ x :=
!(@hom_pullback Dᵒᵖ) proof p qed
theorem pushout_hom_pushout (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
: pushout_hom h₁ h₂ p ∘ pushout f g = h₂ :=
by rexact !(@pullback_hom_pullback Dᵒᵖ)
theorem pushout_hom_pushout_rev (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
: pushout_hom h₁ h₂ p ∘ pushout_rev f g = h₁ :=
by rexact !(@pullback_rev_hom_pullback Dᵒᵖ)
theorem eq_pushout_hom {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g)
{i : pushout_object f g ⟶ x} (q : i ∘ pushout f g = h₂) (r : i ∘ pushout_rev f g = h₁)
: i = pushout_hom h₁ h₂ p :=
by rexact !(@eq_hom_pullback Dᵒᵖ) proof q qed proof r qed
theorem pushout_cocone_unique {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g)
{i₁ : pushout_object f g ⟶ x} (q₁ : i₁ ∘ pushout f g = h₂) (r₁ : i₁ ∘ pushout_rev f g = h₁)
{i₂ : pushout_object f g ⟶ x} (q₂ : i₂ ∘ pushout f g = h₂) (r₂ : i₂ ∘ pushout_rev f g = h₁)
: i₁ = i₂ :=
!(@pullback_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof r₁ qed proof q₂ qed proof r₂ qed
omit K
variables (f g)
definition pushout_object_iso_pushout_object [constructor] (H₁ H₂ : has_pushouts D) :
@pushout_object D H₁ _ _ _ f g ≅ @pushout_object D H₂ _ _ _ f g :=
iso_of_opposite_iso !(@pullback_object_iso_pullback_object (Opposite D))
end pushouts
definition has_limits_of_shape_op_op [H : has_limits_of_shape D Iᵒᵖᵒᵖ]
: has_limits_of_shape D I :=
by induction I with I Is; induction Is; exact H
namespace ops
infixr + := coproduct_object
end ops
end category