133 lines
5 KiB
Text
133 lines
5 KiB
Text
|
/-
|
||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Author: Floris van Doorn
|
||
|
|
||
|
The "equivalence closure" of a type-valued relation.
|
||
|
Given a binary type-valued relation (fibration), we add reflexivity, symmetry and transitivity terms
|
||
|
-/
|
||
|
|
||
|
import .relation types.eq2 arity
|
||
|
|
||
|
open eq
|
||
|
|
||
|
inductive e_closure {A : Type} (R : A → A → Type) : A → A → Type :=
|
||
|
| of_rel : Π{a a'} (r : R a a'), e_closure R a a'
|
||
|
| refl : Πa, e_closure R a a
|
||
|
| symm : Π{a a'} (r : e_closure R a a'), e_closure R a' a
|
||
|
| trans : Π{a a' a''} (r : e_closure R a a') (r' : e_closure R a' a''), e_closure R a a''
|
||
|
|
||
|
namespace e_closure
|
||
|
infix `⬝r`:75 := e_closure.trans
|
||
|
postfix `⁻¹ʳ`:(max+10) := e_closure.symm
|
||
|
notation `[`:max a `]`:0 := e_closure.of_rel a
|
||
|
abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := refl R a
|
||
|
end e_closure
|
||
|
|
||
|
namespace relation
|
||
|
|
||
|
section
|
||
|
parameters {A : Type}
|
||
|
(R : A → A → Type)
|
||
|
local abbreviation T := e_closure R
|
||
|
|
||
|
variables ⦃a a' : A⦄ {s : R a a'} {r : T a a}
|
||
|
parameter {R}
|
||
|
protected definition e_closure.elim {B : Type} {f : A → B}
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' :=
|
||
|
begin
|
||
|
induction t,
|
||
|
exact e r,
|
||
|
reflexivity,
|
||
|
exact v_0⁻¹,
|
||
|
exact v_0 ⬝ v_1
|
||
|
end
|
||
|
|
||
|
definition ap_e_closure_elim_h {B C : Type} {f : A → B} {g : B → C}
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
||
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
||
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
||
|
: ap g (e_closure.elim e t) = e_closure.elim e' t :=
|
||
|
begin
|
||
|
induction t,
|
||
|
apply p,
|
||
|
reflexivity,
|
||
|
exact ap_inv g (e_closure.elim e r) ⬝ inverse2 v_0,
|
||
|
exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (v_0 ◾ v_1)
|
||
|
end
|
||
|
|
||
|
definition ap_e_closure_elim {B C : Type} {f : A → B} (g : B → C)
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
||
|
: ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t :=
|
||
|
ap_e_closure_elim_h e (λa a' s, idp) t
|
||
|
|
||
|
definition ap_e_closure_elim_h_eq {B C : Type} {f : A → B} {g : B → C}
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
||
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
||
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
||
|
: ap_e_closure_elim_h e p t =
|
||
|
ap_e_closure_elim g e t ⬝ ap (λx, e_closure.elim x t) (eq_of_homotopy3 p) :=
|
||
|
begin
|
||
|
fapply homotopy3.rec_on p,
|
||
|
intro q, esimp at q, induction q,
|
||
|
esimp, rewrite eq_of_homotopy3_id
|
||
|
end
|
||
|
|
||
|
theorem ap_ap_e_closure_elim_h {B C D : Type} {f : A → B}
|
||
|
{g : B → C} (h : C → D)
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
||
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
||
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
||
|
: square (ap (ap h) (ap_e_closure_elim_h e p t))
|
||
|
(ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t)
|
||
|
(ap_compose h g (e_closure.elim e t))⁻¹
|
||
|
(ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) :=
|
||
|
begin
|
||
|
induction t,
|
||
|
{ unfold [ap_e_closure_elim_h,e_closure.elim],
|
||
|
apply square_of_eq, exact !con.right_inv ⬝ !con.left_inv⁻¹},
|
||
|
{ apply ids},
|
||
|
{ rewrite [↑e_closure.elim,↓e_closure.elim e r,
|
||
|
↑ap_e_closure_elim_h,
|
||
|
↓ap_e_closure_elim_h e p r,
|
||
|
↓ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) r,
|
||
|
↓ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) r,
|
||
|
ap_con (ap h)],
|
||
|
refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _,
|
||
|
rewrite [con_inv,inv_inv,-inv2_inv],
|
||
|
exact !ap_inv2 ⬝v square_inv2 v_0},
|
||
|
{ rewrite [↑e_closure.elim,↓e_closure.elim e r, ↓e_closure.elim e r',
|
||
|
↑ap_e_closure_elim_h,
|
||
|
↓ap_e_closure_elim_h e p r,
|
||
|
↓ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) r,
|
||
|
↓ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) r,
|
||
|
↓ap_e_closure_elim_h e p r',
|
||
|
↓ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) r',
|
||
|
↓ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) r',
|
||
|
ap_con (ap h)],
|
||
|
refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _,
|
||
|
rewrite [con_inv,inv_inv,con2_inv],
|
||
|
refine !ap_con2 ⬝v square_con2 v_0 v_1},
|
||
|
end
|
||
|
|
||
|
theorem ap_ap_e_closure_elim {B C D : Type} {f : A → B}
|
||
|
(g : B → C) (h : C → D)
|
||
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
||
|
: square (ap (ap h) (ap_e_closure_elim g e t))
|
||
|
(ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t)
|
||
|
(ap_compose h g (e_closure.elim e t))⁻¹
|
||
|
(ap_e_closure_elim h (λa a' r, ap g (e r)) t) :=
|
||
|
!ap_ap_e_closure_elim_h
|
||
|
|
||
|
open e_closure
|
||
|
definition is_equivalence_e_closure : is_equivalence T :=
|
||
|
begin
|
||
|
constructor,
|
||
|
intro a, exact rfl,
|
||
|
intro a a' t, exact t⁻¹ʳ,
|
||
|
intro a a' a'' t t', exact t ⬝r t',
|
||
|
end
|
||
|
|
||
|
end
|
||
|
end relation
|