34 lines
596 B
Text
34 lines
596 B
Text
|
import logic tools.tactic
|
||
|
open tactic
|
||
|
|
||
|
theorem tst1 (a b : Prop) : a → b → b :=
|
||
|
by intros Ha; intros Hb; apply Hb
|
||
|
|
||
|
theorem tst2 (a b : Prop) : a → b → a ∧ b :=
|
||
|
by intros Ha; intros Hb; apply and.intro; apply Hb; apply Ha
|
||
|
|
||
|
theorem tst3 (a b : Prop) : a → b → a ∧ b :=
|
||
|
begin
|
||
|
intros Ha,
|
||
|
intros Hb,
|
||
|
apply and.intro,
|
||
|
apply Hb,
|
||
|
apply Ha
|
||
|
end
|
||
|
|
||
|
theorem tst4 (a b : Prop) : a → b → a ∧ b :=
|
||
|
begin
|
||
|
intros Ha Hb,
|
||
|
apply and.intro,
|
||
|
apply Hb,
|
||
|
apply Ha
|
||
|
end
|
||
|
|
||
|
theorem tst5 (a b : Prop) : a → b → a ∧ b :=
|
||
|
begin
|
||
|
intros,
|
||
|
apply and.intro,
|
||
|
eassumption,
|
||
|
eassumption
|
||
|
end
|