2014-01-05 20:05:08 +00:00
|
|
|
import Int.
|
|
|
|
variable a : Int
|
|
|
|
variable P : Int -> Int -> Bool
|
|
|
|
variable f : Int -> Int -> Int
|
|
|
|
variable g : Int -> Int
|
|
|
|
axiom H1 : P (f a (g a)) (f a (g a))
|
|
|
|
axiom H2 : P (f (g a) (g a)) (f (g a) (g a))
|
|
|
|
axiom H3 : P (f (g a) (g a)) (g a)
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T1 : exists x y : Int, P (f y x) (f y x) := exists_intro _ (exists_intro _ H1)
|
|
|
|
theorem T2 : exists x : Int, P (f x (g x)) (f x (g x)) := exists_intro _ H1
|
|
|
|
theorem T3 : exists x : Int, P (f x x) (f x x) := exists_intro _ H2
|
|
|
|
theorem T4 : exists x : Int, P (f (g a) x) (f x x) := exists_intro _ H2
|
|
|
|
theorem T5 : exists x : Int, P x x := exists_intro _ H2
|
|
|
|
theorem T6 : exists x y : Int, P x y := exists_intro _ (exists_intro _ H3)
|
|
|
|
theorem T7 : exists x : Int, P (f x x) x := exists_intro _ H3
|
|
|
|
theorem T8 : exists x y : Int, P (f x x) y := exists_intro _ (exists_intro _ H3)
|
2013-12-16 17:38:57 +00:00
|
|
|
|
2014-01-05 20:05:08 +00:00
|
|
|
print environment 8.
|