2014-01-05 20:05:08 +00:00
|
|
|
variable N : Type
|
|
|
|
variables a b c : N
|
|
|
|
variables P : N -> N -> N -> Bool
|
|
|
|
axiom H3 : P a b c
|
2013-12-17 01:13:31 +00:00
|
|
|
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T1 : exists x y z : N, P x y z := @exists_intro N (fun x : N, exists y z : N, P x y z) a
|
|
|
|
(@exists_intro N _ b
|
|
|
|
(@exists_intro N (fun z : N, P a b z) c H3))
|
2013-12-17 01:13:31 +00:00
|
|
|
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T2 : exists x y z : N, P x y z := exists_intro a (exists_intro b (exists_intro c H3))
|
2013-12-17 01:13:31 +00:00
|
|
|
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T3 : exists x y z : N, P x y z := exists_intro _ (exists_intro _ (exists_intro _ H3))
|
2013-12-17 01:13:31 +00:00
|
|
|
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T4 (H : P a a b) : exists x y z, P x y z := exists_intro _ (exists_intro _ (exists_intro _ H))
|
2013-12-17 01:13:31 +00:00
|
|
|
|
2014-01-05 20:05:08 +00:00
|
|
|
print environment 4
|