lean2/library/hott/funext_from_ua.lean

82 lines
2.9 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import hott.axioms.ua hott.equiv hott.equiv_precomp
import data.prod data.sigma
open path function prod sigma
-- First, define an axiom free variant of Univalence
definition ua_type := Π (A B : Type), IsEquiv (equiv_path A B)
context
parameters {ua : ua_type}
-- TODO base this theorem on UA instead of FunExt.
-- IsEquiv.postcompose relies on FunExt!
protected theorem ua_isequiv_postcompose {A B C : Type} {w : A → B} {H0 : IsEquiv w}
: IsEquiv (@compose C A B w) :=
!IsEquiv.postcompose
-- We are ready to prove functional extensionality,
-- starting with the naive non-dependent version.
protected definition diagonal [reducible] (B : Type) : Type
:= Σ xy : B × B, pr₁ xy ≈ pr₂ xy
protected definition isequiv_src_compose {A B C : Type}
: @IsEquiv (A → diagonal B)
(A → B)
(compose (pr₁ ∘ dpr1))
:= @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1)
(IsEquiv.adjointify (pr₁ ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp))))
protected definition isequiv_tgt_compose {A B C : Type}
: @IsEquiv (A → diagonal B)
(A → B)
(compose (pr₂ ∘ dpr1))
:= @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1)
(IsEquiv.adjointify (pr2 ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp))))
theorem univalence_implies_funext_nondep (A B : Type)
: Π (f g : A → B), f g → f ≈ g
:= (λ (f g : A → B) (p : f g),
let d := λ (x : A), dpair (f x , f x) idp in
let e := λ (x : A), dpair (f x , g x) (p x) in
let precomp1 := compose (pr₁ ∘ dpr1) in
have equiv1 [visible] : IsEquiv precomp1,
from @isequiv_src_compose A B (diagonal B),
have equiv2 [visible] : Π x y, IsEquiv (ap precomp1),
from IsEquiv.ap_closed precomp1,
have H' : Π (x y : A → diagonal B),
pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y,
from (λ x y, IsEquiv.inv (ap precomp1)),
have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e,
from idp,
have eq0 : d ≈ e,
from H' d e eq2,
have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e,
from ap _ eq0,
eq1
)
end
-- In the following we will proof function extensionality using the univalence axiom
definition funext_from_ua {A : Type} {P : A → Type} (f g : Πx, P x)
: IsEquiv (@apD10 A P f g) :=
sorry