lean2/library/standard/classical.lean

157 lines
5.4 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic cast
using eq_proofs
axiom prop_complete (a : Prop) : a = true a = false
theorem case (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a
:= or_elim (prop_complete a)
(assume Ht : a = true, Ht⁻¹ ▸ H1)
(assume Hf : a = false, Hf⁻¹ ▸ H2)
theorem em (a : Prop) : a ¬a
:= or_elim (prop_complete a)
(assume Ht : a = true, or_inl (eqt_elim Ht))
(assume Hf : a = false, or_inr (eqf_elim Hf))
theorem prop_complete_swapped (a : Prop) : a = false a = true
:= case (λ x, x = false x = true)
(or_inr (refl true))
(or_inl (refl false))
a
theorem not_true : (¬true) = false
:= have aux : (¬true) ≠ true, from
assume H : (¬true) = true,
absurd_not_true (H⁻¹ ▸ trivial),
resolve_right (prop_complete (¬true)) aux
theorem not_false : (¬false) = true
:= have aux : (¬false) ≠ false, from
assume H : (¬false) = false,
H ▸ not_false_trivial,
resolve_right (prop_complete_swapped (¬false)) aux
theorem not_not_eq (a : Prop) : (¬¬a) = a
:= case (λ x, (¬¬x) = x)
(calc (¬¬true) = (¬false) : {not_true}
... = true : not_false)
(calc (¬¬false) = (¬true) : {not_false}
... = false : not_true)
a
theorem not_not_elim {a : Prop} (H : ¬¬a) : a
:= (not_not_eq a) ◂ H
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b
:= or_elim (prop_complete a)
(assume Hat, or_elim (prop_complete b)
(assume Hbt, Hat ⬝ Hbt⁻¹)
(assume Hbf, false_elim (a = b) (Hbf ▸ (Hab (eqt_elim Hat)))))
(assume Haf, or_elim (prop_complete b)
(assume Hbt, false_elim (a = b) (Haf ▸ (Hba (eqt_elim Hbt))))
(assume Hbf, Haf ⬝ Hbf⁻¹))
theorem iff_to_eq {a b : Prop} (H : a ↔ b) : a = b
:= iff_elim (assume H1 H2, propext H1 H2) H
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b)
:= propext
(assume H, iff_to_eq H)
(assume H, eq_to_iff H)
theorem eqt_intro {a : Prop} (H : a) : a = true
:= propext (assume H1 : a, trivial)
(assume H2 : true, H)
theorem eqf_intro {a : Prop} (H : ¬a) : a = false
:= propext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2)
theorem by_contradiction {a : Prop} (H : ¬a → false) : a
:= or_elim (em a) (assume H1 : a, H1) (assume H1 : ¬a, false_elim a (H H1))
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) = false
:= propext (assume H, a_neq_a_elim H)
(assume H, false_elim (a ≠ a) H)
theorem eq_id {A : Type} (a : A) : (a = a) = true
:= eqt_intro (refl a)
theorem heq_id {A : Type} (a : A) : (a == a) = true
:= eqt_intro (hrefl a)
theorem not_or (a b : Prop) : (¬(a b)) = (¬a ∧ ¬b)
:= propext
(assume H, or_elim (em a)
(assume Ha, absurd_elim (¬a ∧ ¬b) (or_inl Ha) H)
(assume Hna, or_elim (em b)
(assume Hb, absurd_elim (¬a ∧ ¬b) (or_inr Hb) H)
(assume Hnb, and_intro Hna Hnb)))
(assume (H : ¬a ∧ ¬b) (N : a b),
or_elim N
(assume Ha, absurd Ha (and_elim_left H))
(assume Hb, absurd Hb (and_elim_right H)))
theorem not_and (a b : Prop) : (¬(a ∧ b)) = (¬a ¬b)
:= propext
(assume H, or_elim (em a)
(assume Ha, or_elim (em b)
(assume Hb, absurd_elim (¬a ¬b) (and_intro Ha Hb) H)
(assume Hnb, or_inr Hnb))
(assume Hna, or_inl Hna))
(assume (H : ¬a ¬b) (N : a ∧ b),
or_elim H
(assume Hna, absurd (and_elim_left N) Hna)
(assume Hnb, absurd (and_elim_right N) Hnb))
theorem imp_or (a b : Prop) : (a → b) = (¬a b)
:= propext
(assume H : a → b, (or_elim (em a)
(assume Ha : a, or_inr (H Ha))
(assume Hna : ¬a, or_inl Hna)))
(assume (H : ¬a b) (Ha : a),
resolve_right H ((not_not_eq a)⁻¹ ◂ Ha))
theorem not_implies (a b : Prop) : (¬(a → b)) = (a ∧ ¬b)
:= calc (¬(a → b)) = (¬(¬a b)) : {imp_or a b}
... = (¬¬a ∧ ¬b) : not_or (¬a) b
... = (a ∧ ¬b) : {not_not_eq a}
theorem a_eq_not_a (a : Prop) : (a = ¬a) = false
:= propext
(assume H, or_elim (em a)
(assume Ha, absurd Ha (H ▸ Ha))
(assume Hna, absurd (H⁻¹ ▸ Hna) Hna))
(assume H, false_elim (a = ¬a) H)
theorem true_eq_false : (true = false) = false
:= not_true ▸ (a_eq_not_a true)
theorem false_eq_true : (false = true) = false
:= not_false ▸ (a_eq_not_a false)
theorem a_eq_true (a : Prop) : (a = true) = a
:= propext (assume H, eqt_elim H) (assume H, eqt_intro H)
theorem a_eq_false (a : Prop) : (a = false) = ¬a
:= propext (assume H, eqf_elim H) (assume H, eqf_intro H)
theorem not_exists_forall {A : Type} {P : A → Prop} (H : ¬∃x, P x) : ∀x, ¬P x
:= take x, or_elim (em (P x))
(assume Hp : P x, absurd_elim (¬P x) (exists_intro x Hp) H)
(assume Hn : ¬P x, Hn)
theorem not_forall_exists {A : Type} {P : A → Prop} (H : ¬∀x, P x) : ∃x, ¬P x
:= by_contradiction (assume H1 : ¬∃ x, ¬P x,
have H2 : ∀x, ¬¬P x, from not_exists_forall H1,
have H3 : ∀x, P x, from take x, not_not_elim (H2 x),
absurd H3 H)
theorem peirce (a b : Prop) : ((a → b) → a) → a
:= assume H, by_contradiction (assume Hna : ¬a,
have Hnna : ¬¬a, from not_implies_left (mt H Hna),
absurd (not_not_elim Hnna) Hna)