2013-09-01 02:15:48 +00:00
|
|
|
|
Assumed: f
|
|
|
|
|
Assumed: N
|
|
|
|
|
Assumed: n1
|
|
|
|
|
Assumed: n2
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 02:15:48 +00:00
|
|
|
|
f::explicit N n1 n2
|
|
|
|
|
f::explicit ((N [33m→[0m N) [33m→[0m N [33m→[0m N) ([33mλ[0m x : N [33m→[0m N, x) ([33mλ[0m y : N [33m→[0m N, y)
|
|
|
|
|
Assumed: EqNice
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: pp::colors
|
2013-09-01 02:15:48 +00:00
|
|
|
|
EqNice::explicit N n1 n2
|
|
|
|
|
N
|
2013-09-02 19:24:29 +00:00
|
|
|
|
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A) (H1 : f = g) (H2 : a = b), (f a) = (g b)
|
2013-09-01 02:15:48 +00:00
|
|
|
|
f::explicit N n1 n2
|
|
|
|
|
Assumed: a
|
|
|
|
|
Assumed: b
|
|
|
|
|
Assumed: c
|
|
|
|
|
Assumed: g
|
|
|
|
|
Assumed: H1
|
|
|
|
|
Proved: Pr
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Axiom H1 : a = b ∧ b = c
|
|
|
|
|
Theorem Pr : (g a) = (g c) :=
|
|
|
|
|
let κ::1 := Trans::explicit
|
2013-09-01 02:15:48 +00:00
|
|
|
|
N
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
(Conjunct1::explicit (a = b) (b = c) H1)
|
|
|
|
|
(Conjunct2::explicit (a = b) (b = c) H1)
|
2013-09-01 17:34:57 +00:00
|
|
|
|
in Congr::explicit N (λ x : N, N) g g a c (Refl::explicit (N → N) g) κ::1
|