lean2/tests/lean/induction1.lean

37 lines
1.3 KiB
Text
Raw Normal View History

import macros -- loads the take, assume, obtain macros
using Nat -- using the Nat namespace (it allows us to suppress the Nat:: prefix)
axiom Induction : ∀ P : Nat → Bool, P 0 ⇒ (∀ n, P n ⇒ P (n + 1)) ⇒ ∀ n, P n.
-- induction on n
theorem Comm1 : ∀ n m, n + m = m + n
:= Induction
◂ _ -- I use a placeholder because I do not want to write the P
◂ (take m, -- Base case
calc 0 + m = m : add::zerol m
... = m + 0 : symm (add::zeror m))
◂ (take n, -- Inductive case
assume (iH : ∀ m, n + m = m + n),
take m,
calc n + 1 + m = (n + m) + 1 : add::succl n m
... = (m + n) + 1 : { iH ◂ m }
... = m + (n + 1) : symm (add::succr m n))
-- indunction on m
theorem Comm2 : ∀ n m, n + m = m + n
:= take n,
Induction
◂ _
◂ (calc n + 0 = n : add::zeror n
... = 0 + n : symm (add::zerol n))
◂ (take m,
assume (iH : n + m = m + n),
calc n + (m + 1) = (n + m) + 1 : add::succr n m
... = (m + n) + 1 : { iH }
... = (m + 1) + n : symm (add::succl m n))
print environment 1