lean2/hott/homotopy/join.hlean

158 lines
6.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer
Declaration of a join as a special case of a pushout
-/
import hit.pushout .susp cubical.cube cubical.squareover
open eq function prod equiv pushout is_trunc bool sigma.ops function
namespace join
section
variables (A B C : Type)
definition join : Type := @pushout (A × B) A B pr1 pr2
definition jglue {A B : Type} (a : A) (b : B) := @glue (A × B) A B pr1 pr2 (a, b)
protected definition is_contr [HA : is_contr A] :
is_contr (join A B) :=
begin
fapply is_contr.mk, exact inl (center A),
intro x, induction x with a b, apply ap inl, apply center_eq,
apply jglue, induction x with a b, apply pathover_of_tr_eq,
apply concat, apply transport_eq_Fr, esimp, rewrite ap_id,
generalize center_eq a, intro p, cases p, apply idp_con,
end
protected definition bool : join bool A ≃ susp A :=
begin
fapply equiv.MK, intro ba, induction ba with b a,
induction b, exact susp.south, exact susp.north, exact susp.north,
induction x with b a, esimp,
induction b, apply inverse, apply susp.merid, exact a, reflexivity,
intro s, induction s with m,
exact inl tt, exact inl ff, exact (jglue tt m) ⬝ (jglue ff m)⁻¹,
intros, induction b with m, do 2 reflexivity, esimp,
apply eq_pathover, apply hconcat, apply hdeg_square, apply concat,
apply ap_compose' (pushout.elim _ _ _), apply concat,
apply ap (ap (pushout.elim _ _ _)), apply susp.elim_merid, apply ap_con,
apply hconcat, apply vconcat, apply hdeg_square, apply elim_glue,
apply hdeg_square, apply ap_inv, esimp,
apply hconcat, apply hdeg_square, apply concat, apply idp_con,
apply concat, apply ap inverse, apply elim_glue, apply inv_inv,
apply hinverse, apply hdeg_square, apply ap_id,
intro x, induction x with b a, induction b, do 2 reflexivity,
esimp, apply jglue, induction x with b a, induction b, esimp,
apply eq_pathover, rewrite ap_id,
apply eq_hconcat, apply concat, apply ap_compose' (susp.elim _ _ _),
apply concat, apply ap (ap _) !elim_glue,
apply concat, apply ap_inv,
apply concat, apply ap inverse !susp.elim_merid,
apply concat, apply con_inv, apply ap (λ x, x ⬝ _) !inv_inv,
apply square_of_eq_top, apply inverse,
apply concat, apply ap (λ x, x ⬝ _) !con.assoc,
rewrite [con.left_inv, con_idp], apply con.right_inv,
esimp, apply eq_pathover, rewrite ap_id,
apply eq_hconcat, apply concat, apply ap_compose' (susp.elim _ _ _),
apply concat, apply ap (ap _) !elim_glue, esimp, reflexivity,
apply square_of_eq_top, rewrite idp_con, apply !con.right_inv⁻¹,
end
protected definition swap : join A B → join B A :=
begin
intro x, induction x with a b, exact inr a, exact inl b,
apply !jglue⁻¹
end
protected definition swap_involutive (x : join A B) :
join.swap B A (join.swap A B x) = x :=
begin
induction x with a b, do 2 reflexivity,
induction x with a b, esimp,
apply eq_pathover, rewrite ap_id,
apply hdeg_square, esimp[join.swap],
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite [elim_glue, ap_inv, elim_glue], apply inv_inv,
end
protected definition symm : join A B ≃ join B A :=
begin
fapply equiv.MK, do 2 apply join.swap,
do 2 apply join.swap_involutive,
end
end
--This proves that the join operator is associative
--The proof is more or less ported from Evan Cavallo's agda version
section switch_assoc
private definition massage_sq {A : Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A}
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₂} {p₀₁ : a₀₀ = a₀₂} {p₂₁ : a₂₀ = a₂₂}
(sq : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₀₁⁻¹ (p₂₁ ⬝ p₁₂⁻¹) idp :=
by induction sq; exact ids
variables {A B C : Type}
private definition switch_left : join A B → join (join C B) A :=
begin
intro x, induction x with a b, exact inr a, exact inl (inr b), apply !jglue⁻¹,
end
private definition switch_coh_fill (a : A) (b : B) (c : C) :
Σ sq : square (jglue (inl c) a)⁻¹ (ap inl (jglue c b))⁻¹ (ap switch_left (jglue a b)) idp,
cube hrfl hrfl (hdeg_square !elim_glue) ids
sq (eq_hconcat !idp_con⁻¹ (massage_sq (square_Fl_Fl_ap_idp _ _))) :=
by esimp; apply cube_fill101
private definition switch_coh (ab : join A B) (c : C) : switch_left ab = inl (inl c) :=
begin
induction ab with a b, apply !jglue⁻¹, apply ap inl !jglue⁻¹, induction x with a b,
apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹, refine _ ⬝vp !ap_inv⁻¹,
apply (switch_coh_fill _ _ _).1,
end
protected definition switch : join (join A B) C → join (join C B) A :=
begin
intro x, induction x with ab c, exact switch_left ab, exact inl (inl c),
induction x with ab c, exact switch_coh ab c,
end
private definition switch_inv_left_square (a : A) (b : B) :
square idp idp (ap (!(@join.switch C) ∘ switch_left) (jglue a b)) (ap inl (jglue a b)) :=
begin
refine hdeg_square !ap_compose ⬝h _,
refine aps join.switch (hdeg_square !elim_glue) ⬝h _, esimp,
refine hdeg_square !(ap_inv join.switch) ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left,switch_coh],
refine (hdeg_square !elim_glue)⁻¹ᵛ ⬝h _, esimp,
refine (hdeg_square !ap_inv)⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_left (c : C) (a : A) :
square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (jglue (inl a) c) :=
begin
refine hrfl ⬝h _,
refine
end
end switch_assoc
exit
protected definition switch_equiv (A B C : Type) :
join (join A B) C ≃ join (join C B) A :=
by apply equiv.MK; do 2 apply join.switch_involutive
protected definition assoc (A B C : Type) :
join (join A B) C ≃ join A (join B C) :=
calc join (join A B) C ≃ join (join C B) A : join.switch_equiv
... ≃ join A (join C B) : join.symm
... ≃ join A (join B C) : join.symm
end join