2015-01-05 17:04:17 -08:00
|
|
|
import data.list
|
|
|
|
open nat list
|
|
|
|
|
2015-04-21 19:33:21 -07:00
|
|
|
section
|
2015-01-05 17:04:17 -08:00
|
|
|
parameter {A : Type}
|
|
|
|
parameter (p : A → Prop)
|
|
|
|
parameter [H : decidable_pred p]
|
|
|
|
include H
|
|
|
|
|
2015-02-25 16:20:44 -08:00
|
|
|
definition filter : list A → list A
|
|
|
|
| filter nil := nil
|
|
|
|
| filter (a :: l) := if p a then a :: filter l else filter l
|
2015-01-05 17:04:17 -08:00
|
|
|
|
|
|
|
theorem filter_nil : filter nil = nil :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem filter_cons (a : A) (l : list A) : filter (a :: l) = if p a then a :: filter l else filter l :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
open eq.ops
|
|
|
|
|
|
|
|
theorem filter_cons_of_pos {a : A} (l : list A) (h : p a) : filter (a :: l) = a :: filter l :=
|
|
|
|
if_pos h ▸ filter_cons a l
|
|
|
|
|
|
|
|
theorem filter_cons_of_neg {a : A} (l : list A) (h : ¬ p a) : filter (a :: l) = filter l :=
|
|
|
|
if_neg h ▸ filter_cons a l
|
|
|
|
end
|
|
|
|
|
|
|
|
check @filter
|
|
|
|
check @filter_cons_of_pos
|
|
|
|
check @filter_cons_of_neg
|