lean2/tests/lean/add_assoc.lean.expected.out

24 lines
1.1 KiB
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Imported 'tactic'
Using: Nat
Proved: add_assoc
Nat::add_zerol : ∀ a : , 0 + a = a
Nat::add_succl : ∀ a b : , a + 1 + b = a + b + 1
@eq_id : ∀ (A : (Type U)) (a : A), a = a ↔
theorem add_assoc (a b c : ) : a + (b + c) = a + b + c :=
Nat::induction_on
a
(let have_expr : 0 + (b + c) = 0 + b + c :=
eqt_elim (trans (congr (congr2 eq (Nat::add_zerol (b + c)))
(congr1 c (congr2 Nat::add (Nat::add_zerol b))))
(eq_id (b + c)))
in have_expr)
(λ (n : ) (iH : n + (b + c) = n + b + c),
let have_expr : n + 1 + (b + c) = n + 1 + b + c :=
eqt_elim (trans (congr (congr2 eq (trans (Nat::add_succl n (b + c)) (congr1 1 (congr2 Nat::add iH))))
(trans (congr1 c (congr2 Nat::add (Nat::add_succl n b)))
(Nat::add_succl (n + b) c)))
(eq_id (n + b + c + 1)))
in have_expr)