2013-08-07 08:16:37 +00:00
/*
Copyright ( c ) 2013 Microsoft Corporation . All rights reserved .
Released under Apache 2.0 license as described in the file LICENSE .
Author : Leonardo de Moura
*/
# pragma once
# include "builtin.h"
namespace lean {
2013-08-08 04:16:04 +00:00
expr mk_trivial ( ) ;
/** \brief (Theorem) Trivial : True */
# define Trivial mk_trivial()
2013-08-07 08:16:37 +00:00
2013-08-07 18:23:04 +00:00
expr mk_true_ne_false ( ) ;
/** \brief (Theorem) TrueNeFalse : Not(True = False) */
# define TrueNeFalse mk_true_ne_false();
expr mk_em_fn ( ) ;
/** \brief (Theorem) a : Bool |- EM(a) : Or(a, Not(a)) */
inline expr EM ( expr const & a ) { return mk_app ( mk_em_fn ( ) , a ) ; }
2013-08-07 08:16:37 +00:00
expr mk_false_elim_fn ( ) ;
/** \brief (Theorem) a : Bool, H : False |- FalseElim(a, H) : a */
inline expr FalseElim ( expr const & a , expr const & H ) { return mk_app ( mk_false_elim_fn ( ) , a , H ) ; }
2013-08-07 18:23:04 +00:00
expr mk_absurd_fn ( ) ;
/** \brief (Theorem) a : Bool, H1 : a, H2 : Not(a) |- Absurd(a, H1, H2) : False */
inline expr Absurd ( expr const & a , expr const & H1 , expr const & H2 ) { return mk_app ( mk_absurd_fn ( ) , a , H1 , H2 ) ; }
2013-08-07 08:16:37 +00:00
expr mk_double_neg_fn ( ) ;
/** \brief (Theorem) a : Bool |- DoubleNeg(a) : Neg(Neg(a)) = a */
inline expr DoubleNeg ( expr const & a ) { return mk_app ( mk_double_neg_fn ( ) , a ) ; }
2013-08-07 18:23:04 +00:00
expr mk_double_neg_elim_fn ( ) ;
/** \brief (Theorem) a : Bool, P : Bool -> Bool, H : P (Not (Not a)) |- DoubleNegElim(a, P, H) : P a */
inline expr DoubleNegElim ( expr const & a , expr const & P , expr const & H ) { return mk_app ( mk_double_neg_elim_fn ( ) , a , P , H ) ; }
2013-08-07 08:16:37 +00:00
expr mk_mt_fn ( ) ;
/** \brief (Theorem) a b : Bool, H1 : a => b, H2 : Not(b) |- MT(a, b, H1, H2) : Not(a) */
inline expr MT ( expr const & a , expr const & b , expr const & H1 , expr const & H2 ) { return mk_app ( mk_mt_fn ( ) , a , b , H1 , H2 ) ; }
expr mk_contrapos_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : a => b |- Contrapos(a, b, H): Neg(b) => Neg(a) */
inline expr Contrapos ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_contrapos_fn ( ) , a , b , H ) ; }
2013-08-07 18:23:04 +00:00
expr mk_false_imp_any_fn ( ) ;
/** \brief (Theorem) a : Bool, H : False |- a */
inline expr FalseImpAny ( expr const & a , expr const & H ) { return mk_app ( mk_false_imp_any_fn ( ) , a , H ) ; }
expr mk_eq_mp_fn ( ) ;
/** \brief (Theorem) a b : Bool, H1 : a = b, H2 : a |- EqMP(a, b, H1, H2) : b */
inline expr EqMP ( expr const & a , expr const & b , expr const & H1 , expr const & H2 ) { return mk_app ( mk_eq_mp_fn ( ) , a , b , H1 , H2 ) ; }
expr mk_not_imp1_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : Not(Implies(a, b)) |- NotImp1(a, b, H) : a */
inline expr NotImp1 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_not_imp1_fn ( ) , a , b , H ) ; }
expr mk_not_imp2_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : Not(Implies(a, b)) |- NotImp2(a, b, H) : Not(b) */
inline expr NotImp2 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_not_imp2_fn ( ) , a , b , H ) ; }
expr mk_conj_fn ( ) ;
/** \brief (Theorem) a b : Bool, H1 : a, H2 : b |- Conj(a, b, H1, H2) : And(a, b) */
inline expr Conj ( expr const & a , expr const & b , expr const & H1 , expr const & H2 ) { return mk_app ( mk_conj_fn ( ) , a , b , H1 , H2 ) ; }
expr mk_conjunct1_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : And(a, b) |- Conjunct1(a, b, H) : a */
inline expr Conjunct1 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_conjunct1_fn ( ) , a , b , H ) ; }
expr mk_conjunct2_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : And(a, b) |- Conjunct2(a, b, H) : b */
inline expr Conjunct2 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_conjunct2_fn ( ) , a , b , H ) ; }
expr mk_disj1_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : a |- Disj1(a, b, H) : Or(a, b) */
inline expr Disj1 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_disj1_fn ( ) , a , b , H ) ; }
expr mk_disj2_fn ( ) ;
/** \brief (Theorem) a b : Bool, H : b |- Disj2(a, b, H) : Or(a, b) */
inline expr Disj2 ( expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_disj2_fn ( ) , a , b , H ) ; }
expr mk_disj_cases_fn ( ) ;
/** \brief (Theorem) a b c : Bool, H1 : Or(a,b), H2 : a -> c, H3 : b -> c |- DisjCases(a, b, c, H1, H2, H3) : c */
inline expr DisjCases ( expr const & a , expr const & b , expr const & c , expr const & H1 , expr const & H2 , expr const & H3 ) { return mk_app ( { mk_disj_cases_fn ( ) , a , b , c , H1 , H2 , H3 } ) ; }
2013-08-07 08:16:37 +00:00
expr mk_symm_fn ( ) ;
/** \brief (Theorem) A : Type u, a b : A, H : a = b |- Symm(A, a, b, H) : b = a */
inline expr Symm ( expr const & A , expr const & a , expr const & b , expr const & H ) { return mk_app ( mk_symm_fn ( ) , A , a , b , H ) ; }
expr mk_trans_fn ( ) ;
/** \brief (Theorem) A : Type u, a b c : A, H1 : a = b, H2 : b = c |- Trans(A, a, b, c, H1, H2) : a = c */
inline expr Trans ( expr const & A , expr const & a , expr const & b , expr const & c , expr const & H1 , expr const & H2 ) { return mk_app ( { mk_trans_fn ( ) , A , a , b , c , H1 , H2 } ) ; }
2013-08-08 02:10:12 +00:00
expr mk_trans_ext_fn ( ) ;
/** \brief (Theorem) A : Type u, B : Type u, a : A, b c : B, H1 : a = b, H2 : b = c |- TransExt(A, B, a, b, c, H1, H2) : a = c */
inline expr TransExt ( expr const & A , expr const & B , expr const & a , expr const & b , expr const & c , expr const & H1 , expr const & H2 ) { return mk_app ( { mk_trans_ext_fn ( ) , A , B , a , b , c , H1 , H2 } ) ; }
2013-08-07 08:16:37 +00:00
2013-08-07 18:23:04 +00:00
expr mk_eqt_elim_fn ( ) ;
/** \brief (Theorem) a : Bool, H : a = True |- EqTElim(a, H) : a */
inline expr EqTElim ( expr const & a , expr const & H ) { return mk_app ( mk_eqt_elim_fn ( ) , a , H ) ; }
expr mk_eqt_intro_fn ( ) ;
/** \brief (Theorem) a : Bool, H : a |- EqTIntro(a, H) : a = True */
inline expr EqTIntro ( expr const & a , expr const & H ) { return mk_app ( mk_eqt_intro_fn ( ) , a , H ) ; }
2013-08-07 08:16:37 +00:00
expr mk_congr1_fn ( ) ;
/** \brief (Theorem) A : Type u, B : A -> Type u, f g : (Pi x : A, B x), a : A, H : f = g |- Congr2(A, B, f, g, a, H) : f a = g a */
inline expr Congr1 ( expr const & A , expr const & B , expr const & f , expr const & g , expr const & a , expr const & H ) { return mk_app ( { mk_congr1_fn ( ) , A , B , f , g , a , H } ) ; }
expr mk_congr2_fn ( ) ;
/** \brief (Theorem) A : Type u, B : A -> Type u, f : (Pi x : A, B x), a b : A, H : a = b |- Congr1(A, B, f, a, b, H) : f a = f b */
inline expr Congr2 ( expr const & A , expr const & B , expr const & f , expr const & a , expr const & b , expr const & H ) { return mk_app ( { mk_congr2_fn ( ) , A , B , f , a , b , H } ) ; }
expr mk_congr_fn ( ) ;
/** \brief (Theorem) A : Type u, B : A -> Type u, f g : (Pi x : A, B x), a b : A, H1 : f = g, H2 : a = b |- Congr(A, B, f, g, a, b, H1, H2) : f a = g b */
inline expr Congr ( expr const & A , expr const & B , expr const & f , expr const & g , expr const & a , expr const & b , expr const & H1 , expr const & H2 ) { return mk_app ( { mk_congr_fn ( ) , A , B , f , g , a , b , H1 , H2 } ) ; }
expr mk_forall_elim_fn ( ) ;
// \brief (Theorem) A : Type u, P : A -> Bool, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a
inline expr ForallElim ( expr const & A , expr const & P , expr const & H , expr const & a ) { return mk_app ( mk_forall_elim_fn ( ) , A , P , H , a ) ; }
/** \brief Add basic theorems to Environment */
void add_basic_thms ( environment & env ) ;
#if 0
expr mk_ext_fn ( ) ;
bool is_ext_fn ( expr const & e ) ;
expr mk_foralli_fn ( ) ;
bool is_foralli_fn ( expr const & e ) ;
expr mk_domain_inj_fn ( ) ;
bool is_domain_inj_fn ( expr const & e ) ;
expr mk_range_inj_fn ( ) ;
bool is_range_inj_fn ( expr const & e ) ;
# endif
}