lean2/library/data/int/order.lean

655 lines
23 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
-- int.order
-- =========
-- The order relation on the integers, and the sign function.
import .basic
open nat (hiding case)
open decidable
open fake_simplifier
open int eq.ops
namespace int
-- ## le
definition le (a b : ) : Prop := ∃n : , a + n = b
infix `<=` := int.le
infix `≤` := int.le
theorem le_intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
exists_intro n H
theorem le_elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
H
-- ### partial order
theorem le_refl (a : ) : a ≤ a :=
le_intro (add_zero_right a)
theorem le_of_nat (n m : ) : (of_nat n ≤ of_nat m) ↔ (n ≤ m) :=
iff.intro
(assume H : of_nat n ≤ of_nat m,
obtain (k : ) (Hk : of_nat n + of_nat k = of_nat m), from le_elim H,
have H2 : n + k = m, from of_nat_inj ((add_of_nat n k)⁻¹ ⬝ Hk),
nat.le_intro H2)
(assume H : n ≤ m,
obtain (k : ) (Hk : n + k = m), from nat.le_elim H,
have H2 : of_nat n + of_nat k = of_nat m, from Hk ▸ add_of_nat n k,
le_intro H2)
theorem le_trans {a b c : } (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
obtain (n : ) (Hn : a + n = b), from le_elim H1,
obtain (m : ) (Hm : b + m = c), from le_elim H2,
have H3 : a + of_nat (n + m) = c, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {(add_of_nat n m)⁻¹}
... = a + n + m : (add_assoc a n m)⁻¹
... = b + m : {Hn}
... = c : Hm,
le_intro H3
theorem le_antisym {a b : } (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
obtain (n : ) (Hn : a + n = b), from le_elim H1,
obtain (m : ) (Hm : b + m = a), from le_elim H2,
have H3 : a + of_nat (n + m) = a + 0, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {(add_of_nat n m)⁻¹}
... = a + n + m : (add_assoc a n m)⁻¹
... = b + m : {Hn}
... = a : Hm
... = a + 0 : (add_zero_right a)⁻¹,
have H4 : of_nat (n + m) = of_nat 0, from add_cancel_left H3,
have H5 : n + m = 0, from of_nat_inj H4,
have H6 : n = 0, from nat.add.eq_zero_left H5,
show a = b, from
calc
a = a + of_nat 0 : (add_zero_right a)⁻¹
... = a + n : {H6⁻¹}
... = b : Hn
-- ### interaction with add
theorem le_add_of_nat_right (a : ) (n : ) : a ≤ a + n :=
le_intro (eq.refl (a + n))
theorem le_add_of_nat_left (a : ) (n : ) : a ≤ n + a :=
le_intro (add_comm a n)
theorem add_le_left {a b : } (H : a ≤ b) (c : ) : c + a ≤ c + b :=
obtain (n : ) (Hn : a + n = b), from le_elim H,
have H2 : c + a + n = c + b, from
calc
c + a + n = c + (a + n) : add_assoc c a n
... = c + b : {Hn},
le_intro H2
theorem add_le_right {a b : } (H : a ≤ b) (c : ) : a + c ≤ b + c :=
add_comm c b ▸ add_comm c a ▸ add_le_left H c
theorem add_le {a b c d : } (H1 : a ≤ b) (H2 : c ≤ d) : a + c ≤ b + d :=
le_trans (add_le_right H1 c) (add_le_left H2 b)
theorem add_le_cancel_right {a b c : } (H : a + c ≤ b + c) : a ≤ b :=
have H1 : a + c + -c ≤ b + c + -c, from add_le_right H (-c),
have H2 : a + c - c ≤ b + c - c, from add_neg_right _ _ ▸ add_neg_right _ _ ▸ H1,
add_sub_inverse b c ▸ add_sub_inverse a c ▸ H2
theorem add_le_cancel_left {a b c : } (H : c + a ≤ c + b) : a ≤ b :=
add_le_cancel_right (add_comm c b ▸ add_comm c a ▸ H)
theorem add_le_inv {a b c d : } (H1 : a + b ≤ c + d) (H2 : c ≤ a) : b ≤ d :=
obtain (n : ) (Hn : c + n = a), from le_elim H2,
have H3 : c + (n + b) ≤ c + d, from add_assoc c n b ▸ Hn⁻¹ ▸ H1,
have H4 : n + b ≤ d, from add_le_cancel_left H3,
show b ≤ d, from le_trans (le_add_of_nat_left b n) H4
theorem le_add_of_nat_right_trans {a b : } (H : a ≤ b) (n : ) : a ≤ b + n :=
le_trans H (le_add_of_nat_right b n)
theorem le_imp_succ_le_or_eq {a b : } (H : a ≤ b) : a + 1 ≤ b a = b :=
obtain (n : ) (Hn : a + n = b), from le_elim H,
discriminate
(assume H2 : n = 0,
have H3 : a = b, from
calc
a = a + 0 : (add_zero_right a)⁻¹
... = a + n : {H2⁻¹}
... = b : Hn,
or.inr H3)
(take k : ,
assume H2 : n = succ k,
have H3 : a + 1 + k = b, from
calc
a + 1 + k = a + succ k : by simp
... = a + n : by simp
... = b : Hn,
or.inl (le_intro H3))
-- ### interaction with neg and sub
theorem le_neg {a b : } (H : a ≤ b) : -b ≤ -a :=
obtain (n : ) (Hn : a + n = b), from le_elim H,
have H2 : b - n = a, from add_imp_sub_right Hn,
have H3 : -b + n = -a, from
calc
-b + n = -b + -(-n) : {(neg_neg n)⁻¹}
... = -(b + -n) : (neg_add_distr b (-n))⁻¹
... = -(b - n) : {add_neg_right _ _}
... = -a : {H2},
le_intro H3
theorem neg_le_zero {a : } (H : 0 ≤ a) : -a ≤ 0 :=
neg_zero ▸ (le_neg H)
theorem zero_le_neg {a : } (H : a ≤ 0) : 0 ≤ -a :=
neg_zero ▸ (le_neg H)
theorem le_neg_inv {a b : } (H : -a ≤ -b) : b ≤ a :=
neg_neg b ▸ neg_neg a ▸ le_neg H
theorem le_sub_of_nat (a : ) (n : ) : a - n ≤ a :=
le_intro (sub_add_inverse a n)
theorem sub_le_right {a b : } (H : a ≤ b) (c : ) : a - c ≤ b - c :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_le_right H _
theorem sub_le_left {a b : } (H : a ≤ b) (c : ) : c - b ≤ c - a :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_le_left (le_neg H) _
theorem sub_le {a b c d : } (H1 : a ≤ b) (H2 : d ≤ c) : a - c ≤ b - d :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_le H1 (le_neg H2)
theorem sub_le_right_inv {a b c : } (H : a - c ≤ b - c) : a ≤ b :=
add_le_cancel_right ((add_neg_right _ _)⁻¹ ▸ (add_neg_right _ _)⁻¹ ▸ H)
theorem sub_le_left_inv {a b c : } (H : c - a ≤ c - b) : b ≤ a :=
le_neg_inv (add_le_cancel_left
((add_neg_right _ _)⁻¹ ▸ (add_neg_right _ _)⁻¹ ▸ H))
theorem le_iff_sub_nonneg (a b : ) : a ≤ b ↔ 0 ≤ b - a :=
iff.intro
(assume H, sub_self _ ▸ sub_le_right H a)
(assume H, sub_add_inverse _ _ ▸ add_zero_left _ ▸ add_le_right H a)
-- Less than, Greater than, Greater than or equal
-- ----------------------------------------------
definition lt (a b : ) := a + 1 ≤ b
infix `<` := int.lt
definition ge (a b : ) := b ≤ a
infix `>=` := int.ge
infix `≥` := int.ge
definition gt (a b : ) := b < a
infix `>` := int.gt
theorem lt_def (a b : ) : a < b ↔ a + 1 ≤ b :=
iff.refl (a < b)
theorem gt_def (n m : ) : n > m ↔ m < n :=
iff.refl (n > m)
theorem ge_def (n m : ) : n ≥ m ↔ m ≤ n :=
iff.refl (n ≥ m)
-- add_rewrite gt_def ge_def --it might be possible to remove this in Lean 0.2
theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
le_intro (show a + 1 + n = a + succ n, by simp)
theorem lt_intro {a b : } {n : } (H : a + succ n = b) : a < b :=
H ▸ lt_add_succ a n
theorem lt_elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le_elim H,
have H2 : a + succ n = b, from
calc
a + succ n = a + 1 + n : by simp
... = b : Hn,
exists_intro n H2
-- -- ### basic facts
theorem lt_irrefl (a : ) : ¬ a < a :=
not_intro
(assume H : a < a,
obtain (n : ) (Hn : a + succ n = a), from lt_elim H,
have H2 : a + succ n = a + 0, from
calc
a + succ n = a : Hn
... = a + 0 : by simp,
have H3 : succ n = 0, from add_cancel_left H2,
have H4 : succ n = 0, from of_nat_inj H3,
absurd H4 succ_ne_zero)
theorem lt_imp_ne {a b : } (H : a < b) : a ≠ b :=
not_intro (assume H2 : a = b, absurd (H2 ▸ H) (lt_irrefl b))
theorem lt_of_nat (n m : ) : (of_nat n < of_nat m) ↔ (n < m) :=
calc
(of_nat n + 1 ≤ of_nat m) ↔ (of_nat (succ n) ≤ of_nat m) : by simp
... ↔ (succ n ≤ m) : le_of_nat (succ n) m
... ↔ (n < m) : iff.symm (eq_to_iff (nat.lt_def n m))
theorem gt_of_nat (n m : ) : (of_nat n > of_nat m) ↔ (n > m) :=
lt_of_nat m n
-- ### interaction with le
theorem lt_imp_le_succ {a b : } (H : a < b) : a + 1 ≤ b :=
H
theorem le_succ_imp_lt {a b : } (H : a + 1 ≤ b) : a < b :=
H
theorem self_lt_succ (a : ) : a < a + 1 :=
le_refl (a + 1)
theorem lt_imp_le {a b : } (H : a < b) : a ≤ b :=
obtain (n : ) (Hn : a + succ n = b), from lt_elim H,
le_intro Hn
theorem le_imp_lt_or_eq {a b : } (H : a ≤ b) : a < b a = b :=
le_imp_succ_le_or_eq H
theorem le_ne_imp_lt {a b : } (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
or.resolve_left (le_imp_lt_or_eq H1) H2
theorem le_imp_lt_succ {a b : } (H : a ≤ b) : a < b + 1 :=
add_le_right H 1
theorem lt_succ_imp_le {a b : } (H : a < b + 1) : a ≤ b :=
add_le_cancel_right H
-- ### transitivity, antisymmmetry
theorem lt_le_trans {a b c : } (H1 : a < b) (H2 : b ≤ c) : a < c :=
le_trans H1 H2
theorem le_lt_trans {a b c : } (H1 : a ≤ b) (H2 : b < c) : a < c :=
le_trans (add_le_right H1 1) H2
theorem lt_trans {a b c : } (H1 : a < b) (H2 : b < c) : a < c :=
lt_le_trans H1 (lt_imp_le H2)
theorem le_imp_not_gt {a b : } (H : a ≤ b) : ¬ a > b :=
not_intro (assume H2 : a > b, absurd (le_lt_trans H H2) (lt_irrefl a))
theorem lt_imp_not_ge {a b : } (H : a < b) : ¬ a ≥ b :=
not_intro (assume H2 : a ≥ b, absurd (lt_le_trans H H2) (lt_irrefl a))
theorem lt_antisym {a b : } (H : a < b) : ¬ b < a :=
le_imp_not_gt (lt_imp_le H)
-- ### interaction with addition
theorem add_lt_left {a b : } (H : a < b) (c : ) : c + a < c + b :=
(add_assoc c a 1)⁻¹ ▸ add_le_left H c
theorem add_lt_right {a b : } (H : a < b) (c : ) : a + c < b + c :=
add_comm c b ▸ add_comm c a ▸ add_lt_left H c
theorem add_le_lt {a b c d : } (H1 : a ≤ c) (H2 : b < d) : a + b < c + d :=
le_lt_trans (add_le_right H1 b) (add_lt_left H2 c)
theorem add_lt_le {a b c d : } (H1 : a < c) (H2 : b ≤ d) : a + b < c + d :=
lt_le_trans (add_lt_right H1 b) (add_le_left H2 c)
theorem add_lt {a b c d : } (H1 : a < c) (H2 : b < d) : a + b < c + d :=
add_lt_le H1 (lt_imp_le H2)
theorem add_lt_cancel_left {a b c : } (H : c + a < c + b) : a < b :=
add_le_cancel_left (add_assoc c a 1 ▸ H)
theorem add_lt_cancel_right {a b c : } (H : a + c < b + c) : a < b :=
add_lt_cancel_left (add_comm b c ▸ add_comm a c ▸ H)
-- ### interaction with neg and sub
theorem lt_neg {a b : } (H : a < b) : -b < -a :=
have H2 : -(a + 1) + 1 = -a, by simp,
have H3 : -b ≤ -(a + 1), from le_neg H,
have H4 : -b + 1 ≤ -(a + 1) + 1, from add_le_right H3 1,
H2 ▸ H4
theorem neg_lt_zero {a : } (H : 0 < a) : -a < 0 :=
neg_zero ▸ lt_neg H
theorem zero_lt_neg {a : } (H : a < 0) : 0 < -a :=
neg_zero ▸ lt_neg H
theorem lt_neg_inv {a b : } (H : -a < -b) : b < a :=
neg_neg b ▸ neg_neg a ▸ lt_neg H
theorem lt_sub_of_nat_succ (a : ) (n : ) : a - succ n < a :=
lt_intro (sub_add_inverse a (succ n))
theorem sub_lt_right {a b : } (H : a < b) (c : ) : a - c < b - c :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_lt_right H _
theorem sub_lt_left {a b : } (H : a < b) (c : ) : c - b < c - a :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_lt_left (lt_neg H) _
theorem sub_lt {a b c d : } (H1 : a < b) (H2 : d < c) : a - c < b - d :=
add_neg_right _ _ ▸ add_neg_right _ _ ▸ add_lt H1 (lt_neg H2)
theorem sub_lt_right_inv {a b c : } (H : a - c < b - c) : a < b :=
add_lt_cancel_right ((add_neg_right _ _)⁻¹ ▸ (add_neg_right _ _)⁻¹ ▸ H)
theorem sub_lt_left_inv {a b c : } (H : c - a < c - b) : b < a :=
lt_neg_inv (add_lt_cancel_left
((add_neg_right _ _)⁻¹ ▸ (add_neg_right _ _)⁻¹ ▸ H))
-- ### totality of lt and le
-- add_rewrite succ_pos zero_le --move some of these to nat.lean
-- add_rewrite le_of_nat lt_of_nat gt_of_nat --remove gt_of_nat in Lean 0.2
-- add_rewrite le_neg lt_neg neg_le_zero zero_le_neg zero_lt_neg neg_lt_zero
theorem neg_le_pos (n m : ) : -n ≤ m :=
have H1 : of_nat 0 ≤ of_nat m, by simp,
have H2 : -n ≤ 0, by simp,
le_trans H2 H1
theorem le_or_gt (a b : ) : a ≤ b a > b :=
int_by_cases a
(take n : ,
int_by_cases_succ b
(take m : ,
show of_nat n ≤ m of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m))
(take m : ,
show n ≤ -succ m n > -succ m, from
have H0 : -succ m < -m, from lt_neg ((of_nat_succ m)⁻¹ ▸ self_lt_succ m),
have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n),
or.inr H))
(take n : ,
int_by_cases_succ b
(take m : ,
show -n ≤ m -n > m, from
or.inl (neg_le_pos n m))
(take m : ,
show -n ≤ -succ m -n > -succ m, from
or.imp_or le_or_gt
(assume H : succ m ≤ n,
le_neg (iff.elim_left (iff.symm (le_of_nat (succ m) n)) H))
(assume H : succ m > n,
lt_neg (iff.elim_left (iff.symm (lt_of_nat n (succ m))) H))))
theorem trichotomy_alt (a b : ) : (a < b a = b) a > b :=
or.imp_or_left (le_or_gt a b) (assume H : a ≤ b, le_imp_lt_or_eq H)
theorem trichotomy (a b : ) : a < b a = b a > b :=
iff.elim_left or.assoc (trichotomy_alt a b)
theorem le_total (a b : ) : a ≤ b b ≤ a :=
or.imp_or_right (le_or_gt a b) (assume H : b < a, lt_imp_le H)
theorem not_lt_imp_le {a b : } (H : ¬ a < b) : b ≤ a :=
or.resolve_left (le_or_gt b a) H
theorem not_le_imp_lt {a b : } (H : ¬ a ≤ b) : b < a :=
or.resolve_right (le_or_gt a b) H
-- (non)positivity and (non)negativity
-- -------------------------------------
-- ### basic
-- see also "int_by_cases" and similar theorems
theorem pos_imp_exists_nat {a : } (H : a ≥ 0) : ∃n : , a = n :=
obtain (n : ) (Hn : of_nat 0 + n = a), from le_elim H,
exists_intro n (Hn⁻¹ ⬝ add_zero_left n)
theorem neg_imp_exists_nat {a : } (H : a ≤ 0) : ∃n : , a = -n :=
have H2 : -a ≥ 0, from zero_le_neg H,
obtain (n : ) (Hn : -a = n), from pos_imp_exists_nat H2,
have H3 : a = -n, from (neg_move Hn)⁻¹,
exists_intro n H3
theorem to_nat_nonneg_eq {a : } (H : a ≥ 0) : (to_nat a) = a :=
obtain (n : ) (Hn : a = n), from pos_imp_exists_nat H,
Hn⁻¹ ▸ congr_arg of_nat (to_nat_of_nat n)
theorem of_nat_nonneg (n : ) : of_nat n ≥ 0 :=
iff.mp (iff.symm (le_of_nat _ _)) zero_le
definition le_decidable [instance] {a b : } : decidable (a ≤ b) :=
have aux : Πx, decidable (0 ≤ x), from
take x,
have H : 0 ≤ x ↔ of_nat (to_nat x) = x, from
iff.intro
(assume H1, to_nat_nonneg_eq H1)
(assume H1, H1 ▸ of_nat_nonneg (to_nat x)),
decidable_iff_equiv _ (iff.symm H),
decidable_iff_equiv (aux _) (iff.symm (le_iff_sub_nonneg a b))
definition ge_decidable [instance] {a b : } : decidable (a ≥ b) := _
definition lt_decidable [instance] {a b : } : decidable (a < b) := _
definition gt_decidable [instance] {a b : } : decidable (a > b) := _
--to_nat_neg is already taken... rename?
theorem to_nat_negative {a : } (H : a ≤ 0) : (to_nat a) = -a :=
obtain (n : ) (Hn : a = -n), from neg_imp_exists_nat H,
calc
(to_nat a) = (to_nat ( -n)) : {Hn}
... = (to_nat n) : {to_nat_neg n}
... = n : {to_nat_of_nat n}
... = -a : (neg_move (Hn⁻¹))⁻¹
theorem to_nat_cases (a : ) : a = (to_nat a) a = - (to_nat a) :=
or.imp_or (le_total 0 a)
(assume H : a ≥ 0, (to_nat_nonneg_eq H)⁻¹)
(assume H : a ≤ 0, (neg_move ((to_nat_negative H)⁻¹))⁻¹)
-- ### interaction of mul with le and lt
theorem mul_le_left_nonneg {a b c : } (Ha : a ≥ 0) (H : b ≤ c) : a * b ≤ a * c :=
obtain (n : ) (Hn : b + n = c), from le_elim H,
have H2 : a * b + of_nat ((to_nat a) * n) = a * c, from
calc
a * b + of_nat ((to_nat a) * n) = a * b + (to_nat a) * of_nat n : by simp
... = a * b + a * n : {to_nat_nonneg_eq Ha}
... = a * (b + n) : by simp
... = a * c : by simp,
le_intro H2
theorem mul_le_right_nonneg {a b c : } (Hb : b ≥ 0) (H : a ≤ c) : a * b ≤ c * b :=
mul_comm b c ▸ mul_comm b a ▸ mul_le_left_nonneg Hb H
theorem mul_le_left_nonpos {a b c : } (Ha : a ≤ 0) (H : b ≤ c) : a * c ≤ a * b :=
have H2 : -a * b ≤ -a * c, from mul_le_left_nonneg (zero_le_neg Ha) H,
have H3 : -(a * b) ≤ -(a * c), from mul_neg_left a c ▸ mul_neg_left a b ▸ H2,
le_neg_inv H3
theorem mul_le_right_nonpos {a b c : } (Hb : b ≤ 0) (H : c ≤ a) : a * b ≤ c * b :=
mul_comm b c ▸ mul_comm b a ▸ mul_le_left_nonpos Hb H
---this theorem can be made more general by replacing either Ha with 0 ≤ a or Hb with 0 ≤ d...
theorem mul_le_nonneg {a b c d : } (Ha : a ≥ 0) (Hb : b ≥ 0) (Hc : a ≤ c) (Hd : b ≤ d)
: a * b ≤ c * d :=
le_trans (mul_le_right_nonneg Hb Hc) (mul_le_left_nonneg (le_trans Ha Hc) Hd)
theorem mul_le_nonpos {a b c d : } (Ha : a ≤ 0) (Hb : b ≤ 0) (Hc : c ≤ a) (Hd : d ≤ b)
: a * b ≤ c * d :=
le_trans (mul_le_right_nonpos Hb Hc) (mul_le_left_nonpos (le_trans Hc Ha) Hd)
theorem mul_lt_left_pos {a b c : } (Ha : a > 0) (H : b < c) : a * b < a * c :=
have H2 : a * b < a * b + a, from add_zero_right (a * b) ▸ add_lt_left Ha (a * b),
have H3 : a * b + a ≤ a * c, from (by simp) ▸ mul_le_left_nonneg (lt_imp_le Ha) H,
lt_le_trans H2 H3
theorem mul_lt_right_pos {a b c : } (Hb : b > 0) (H : a < c) : a * b < c * b :=
mul_comm b c ▸ mul_comm b a ▸ mul_lt_left_pos Hb H
theorem mul_lt_left_neg {a b c : } (Ha : a < 0) (H : b < c) : a * c < a * b :=
have H2 : -a * b < -a * c, from mul_lt_left_pos (zero_lt_neg Ha) H,
have H3 : -(a * b) < -(a * c), from mul_neg_left a c ▸ mul_neg_left a b ▸ H2,
lt_neg_inv H3
theorem mul_lt_right_neg {a b c : } (Hb : b < 0) (H : c < a) : a * b < c * b :=
mul_comm b c ▸ mul_comm b a ▸ mul_lt_left_neg Hb H
theorem mul_le_lt_pos {a b c d : } (Ha : a > 0) (Hb : b ≥ 0) (Hc : a ≤ c) (Hd : b < d)
: a * b < c * d :=
le_lt_trans (mul_le_right_nonneg Hb Hc) (mul_lt_left_pos (lt_le_trans Ha Hc) Hd)
theorem mul_lt_le_pos {a b c d : } (Ha : a ≥ 0) (Hb : b > 0) (Hc : a < c) (Hd : b ≤ d)
: a * b < c * d :=
lt_le_trans (mul_lt_right_pos Hb Hc) (mul_le_left_nonneg (le_trans Ha (lt_imp_le Hc)) Hd)
theorem mul_lt_pos {a b c d : } (Ha : a > 0) (Hb : b > 0) (Hc : a < c) (Hd : b < d)
: a * b < c * d :=
mul_lt_le_pos (lt_imp_le Ha) Hb Hc (lt_imp_le Hd)
theorem mul_lt_neg {a b c d : } (Ha : a < 0) (Hb : b < 0) (Hc : c < a) (Hd : d < b)
: a * b < c * d :=
lt_trans (mul_lt_right_neg Hb Hc) (mul_lt_left_neg (lt_trans Hc Ha) Hd)
-- theorem mul_le_lt_neg and mul_lt_le_neg?
theorem mul_lt_cancel_left_nonneg {a b c : } (Hc : c ≥ 0) (H : c * a < c * b) : a < b :=
or.elim (le_or_gt b a)
(assume H2 : b ≤ a,
have H3 : c * b ≤ c * a, from mul_le_left_nonneg Hc H2,
absurd H3 (lt_imp_not_ge H))
(assume H2 : a < b, H2)
theorem mul_lt_cancel_right_nonneg {a b c : } (Hc : c ≥ 0) (H : a * c < b * c) : a < b :=
mul_lt_cancel_left_nonneg Hc (mul_comm b c ▸ mul_comm a c ▸ H)
theorem mul_lt_cancel_left_nonpos {a b c : } (Hc : c ≤ 0) (H : c * b < c * a) : a < b :=
have H2 : -(c * a) < -(c * b), from lt_neg H,
have H3 : -c * a < -c * b,
from (mul_neg_left c b)⁻¹ ▸ (mul_neg_left c a)⁻¹ ▸ H2,
have H4 : -c ≥ 0, from zero_le_neg Hc,
mul_lt_cancel_left_nonneg H4 H3
theorem mul_lt_cancel_right_nonpos {a b c : } (Hc : c ≤ 0) (H : b * c < a * c) : a < b :=
mul_lt_cancel_left_nonpos Hc (mul_comm b c ▸ mul_comm a c ▸ H)
theorem mul_le_cancel_left_pos {a b c : } (Hc : c > 0) (H : c * a ≤ c * b) : a ≤ b :=
or.elim (le_or_gt a b)
(assume H2 : a ≤ b, H2)
(assume H2 : a > b,
have H3 : c * a > c * b, from mul_lt_left_pos Hc H2,
absurd H3 (le_imp_not_gt H))
theorem mul_le_cancel_right_pos {a b c : } (Hc : c > 0) (H : a * c ≤ b * c) : a ≤ b :=
mul_le_cancel_left_pos Hc (mul_comm b c ▸ mul_comm a c ▸ H)
theorem mul_le_cancel_left_neg {a b c : } (Hc : c < 0) (H : c * b ≤ c * a) : a ≤ b :=
have H2 : -(c * a) ≤ -(c * b), from le_neg H,
have H3 : -c * a ≤ -c * b,
from (mul_neg_left c b)⁻¹ ▸ (mul_neg_left c a)⁻¹ ▸ H2,
have H4 : -c > 0, from zero_lt_neg Hc,
mul_le_cancel_left_pos H4 H3
theorem mul_le_cancel_right_neg {a b c : } (Hc : c < 0) (H : b * c ≤ a * c) : a ≤ b :=
mul_le_cancel_left_neg Hc (mul_comm b c ▸ mul_comm a c ▸ H)
theorem mul_eq_one_left {a b : } (H : a * b = 1) : a = 1 a = - 1 :=
have H2 : (to_nat a) * (to_nat b) = 1, from
calc
(to_nat a) * (to_nat b) = (to_nat (a * b)) : (mul_to_nat a b)⁻¹
... = (to_nat 1) : {H}
... = 1 : to_nat_of_nat 1,
have H3 : (to_nat a) = 1, from mul_eq_one_left H2,
or.imp_or (to_nat_cases a)
(assume H4 : a = (to_nat a), H3 ▸ H4)
(assume H4 : a = - (to_nat a), H3 ▸ H4)
theorem mul_eq_one_right {a b : } (H : a * b = 1) : b = 1 b = - 1 :=
mul_eq_one_left (mul_comm a b ▸ H)
-- sign function
-- -------------
definition sign (a : ) : := if a > 0 then 1 else (if a < 0 then - 1 else 0)
theorem sign_pos {a : } (H : a > 0) : sign a = 1 :=
if_pos H
theorem sign_negative {a : } (H : a < 0) : sign a = - 1 :=
if_neg (lt_antisym H) ⬝ if_pos H
theorem sign_zero : sign 0 = 0 :=
if_neg (lt_irrefl 0) ⬝ if_neg (lt_irrefl 0)
-- add_rewrite sign_negative sign_pos to_nat_negative to_nat_nonneg_eq sign_zero mul_to_nat
theorem mul_sign_to_nat (a : ) : sign a * (to_nat a) = a :=
have temp1 : ∀a : , a < 0 → a ≤ 0, from take a, lt_imp_le,
have temp2 : ∀a : , a > 0 → a ≥ 0, from take a, lt_imp_le,
or.elim3 (trichotomy a 0)
(assume H : a < 0, by simp)
(assume H : a = 0, by simp)
(assume H : a > 0, by simp)
-- TODO: show decidable for equality (and avoid classical library)
theorem sign_mul (a b : ) : sign (a * b) = sign a * sign b :=
or.elim (em (a = 0))
(assume Ha : a = 0, by simp)
(assume Ha : a ≠ 0,
or.elim (em (b = 0))
(assume Hb : b = 0, by simp)
(assume Hb : b ≠ 0,
have H : sign (a * b) * (to_nat (a * b)) = sign a * sign b * (to_nat (a * b)), from
calc
sign (a * b) * (to_nat (a * b)) = a * b : mul_sign_to_nat (a * b)
... = sign a * (to_nat a) * b : {(mul_sign_to_nat a)⁻¹}
... = sign a * (to_nat a) * (sign b * (to_nat b)) : {(mul_sign_to_nat b)⁻¹}
... = sign a * sign b * (to_nat (a * b)) : by simp,
have H2 : (to_nat (a * b)) ≠ 0, from
take H2', mul_ne_zero Ha Hb (to_nat_eq_zero H2'),
have H3 : (to_nat (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
mul_cancel_right H3 H))
theorem sign_idempotent (a : ) : sign (sign a) = sign a :=
have temp : of_nat 1 > 0, from iff.elim_left (iff.symm (lt_of_nat 0 1)) succ_pos,
--this should be done with simp
or.elim3 (trichotomy a 0) sorry sorry sorry
-- (by simp)
-- (by simp)
-- (by simp)
theorem sign_succ (n : ) : sign (succ n) = 1 :=
sign_pos (iff.elim_left (iff.symm (lt_of_nat 0 (succ n))) succ_pos)
--this should be done with simp
theorem sign_neg (a : ) : sign (-a) = - sign a :=
have temp1 : a > 0 → -a < 0, from neg_lt_zero,
have temp2 : a < 0 → -a > 0, from zero_lt_neg,
or.elim3 (trichotomy a 0) sorry sorry sorry
-- (by simp)
-- (by simp)
-- (by simp)
-- add_rewrite sign_neg
theorem to_nat_sign_ne_zero {a : } (H : a ≠ 0) : (to_nat (sign a)) = 1 :=
or.elim3 (trichotomy a 0) sorry
-- (by simp)
(assume H2 : a = 0, absurd H2 H)
sorry
-- (by simp)
theorem sign_to_nat (a : ) : sign (to_nat a) = to_nat (sign a) :=
have temp1 : ∀a : , a < 0 → a ≤ 0, from take a, lt_imp_le,
have temp2 : ∀a : , a > 0 → a ≥ 0, from take a, lt_imp_le,
or.elim3 (trichotomy a 0) sorry sorry sorry
-- (by simp)
-- (by simp)
-- (by simp)
end int