lean2/library/theories/group_theory/quotient.lean

567 lines
21 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Zipperer, Jeremy Avigad
We provide two versions of the quoptient construction. They use the same names and notation:
one lives in the namespace 'quotient_group' and the other lives in the namespace
'quotient_group_general'.
The first takes a group, A, and a normal subgroup, H. We have
quotient H := the quotient of A by H
qproj H a := the projection, with notation a' * G
qproj H ' s := the image of s, with notation s / G
extend H respf := given f : A → B respecting the equivalence relation, we get a function
f : quotient G → B
bar f := the above, G = ker f)
The definition is constructive, using quotient types. We prove all the characteristic properties.
As in the SSReflect library, we also provide a construction to quotient by an *arbitrary subgroup*.
Now we have
quotient H := the quotient of normalizer H by H
qproj H a := still denoted a '* H, the projection when a is in normalizer H,
arbitrary otherwise
qproj H G := still denoted G / H, the image of the above
extend H G respf := given a homomorphism on G with ker_in G f ⊆ H, extends to a
homomorphism G / H
bar G f := the above, with H = ker_in f G
This quotient H is defined by composing the first one with the construction which turns
normalizer H into a group.
-/
import .subgroup_to_group theories.move
open set function subtype classical quot
namespace group_theory
open coset_notation
variables {A B C : Type}
/- the quotient group -/
namespace quotient_group
variables [group A] (H : set A) [is_normal H]
definition lcoset_setoid [instance] : setoid A :=
setoid.mk (lcoset_equiv H) (equivalence_lcoset_equiv H)
definition quotient := quot (lcoset_setoid H)
private definition qone : quotient H := ⟦ 1 ⟧
private definition qmul : quotient H → quotient H → quotient H :=
quot.lift₂
(λ a b, ⟦a * b⟧)
(λ a₁ a₂ b₁ b₂ e₁ e₂, quot.sound (lcoset_equiv_mul H e₁ e₂))
private definition qinv : quotient H → quotient H :=
quot.lift
(λ a, ⟦a⁻¹⟧)
(λ a₁ a₂ e, quot.sound (lcoset_equiv_inv H e))
private proposition qmul_assoc (a b c : quotient H) :
qmul H (qmul H a b) c = qmul H a (qmul H b c) :=
quot.induction_on₂ a b (λ a b, quot.induction_on c (λ c,
have H : ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rewrite mul.assoc,
H))
private proposition qmul_qone (a : quotient H) : qmul H a (qone H) = a :=
quot.induction_on a (λ a', show ⟦a' * 1⟧ = ⟦a'⟧, by rewrite mul_one)
private proposition qone_qmul (a : quotient H) : qmul H (qone H) a = a :=
quot.induction_on a (λ a', show ⟦1 * a'⟧ = ⟦a'⟧, by rewrite one_mul)
private proposition qmul_left_inv (a : quotient H) : qmul H (qinv H a) a = qone H :=
quot.induction_on a (λ a', show ⟦a'⁻¹ * a'⟧ = ⟦1⟧, by rewrite mul.left_inv)
protected definition group [instance] : group (quotient H) :=
⦃ group,
mul := qmul H,
inv := qinv H,
one := qone H,
mul_assoc := qmul_assoc H,
mul_one := qmul_qone H,
one_mul := qone_qmul H,
mul_left_inv := qmul_left_inv H
-- these theorems characterize the quotient group
definition qproj (a : A) : quotient H := ⟦a⟧
infix ` '* `:65 := λ {A' : Type} [group A'] a H' [is_normal H'], qproj H' a
infix ` / ` := λ {A' : Type} [group A'] G H' [is_normal H'], qproj H' ' G
proposition is_hom_qproj [instance] : is_hom (qproj H) :=
is_mul_hom.mk (λ a b, rfl)
variable {H}
proposition qproj_eq_qproj {a b : A} (h : a * H = b * H) : a '* H = b '* H :=
quot.sound h
proposition lcoset_eq_lcoset_of_qproj_eq_qproj {a b : A} (h : a '* H = b '* H) : a * H = b * H :=
quot.exact h
variable (H)
proposition qproj_eq_qproj_iff (a b : A) : a '* H = b '* H ↔ a * H = b * H :=
iff.intro lcoset_eq_lcoset_of_qproj_eq_qproj qproj_eq_qproj
proposition ker_qproj [is_subgroup H] : ker (qproj H) = H :=
ext (take a,
begin
rewrite [↑ker, mem_set_of_iff, -hom_one (qproj H), qproj_eq_qproj_iff,
one_lcoset],
show a * H = H ↔ a ∈ H, from iff.intro mem_of_lcoset_eq_self lcoset_eq_self_of_mem
end)
proposition qproj_eq_one_iff [is_subgroup H] (a : A) : a '* H = 1 ↔ a ∈ H :=
have H : qproj H a = 1 ↔ a ∈ ker (qproj H), from iff.rfl,
by rewrite [H, ker_qproj]
variable {H}
proposition qproj_eq_one_of_mem [is_subgroup H] {a : A} (aH : a ∈ H) : a '* H = 1 :=
iff.mpr (qproj_eq_one_iff H a) aH
proposition mem_of_qproj_eq_one [is_subgroup H] {a : A} (h : a '* H = 1) : a ∈ H :=
iff.mp (qproj_eq_one_iff H a) h
variable (H)
proposition surjective_qproj : surjective (qproj H) :=
take y, quot.induction_on y (λ a, exists.intro a rfl)
variable {H}
proposition quotient_induction {P : quotient H → Prop} (h : ∀ a, P (a '* H)) : ∀ a, P a :=
quot.ind h
proposition quotient_induction₂ {P : quotient H → quotient H → Prop}
(h : ∀ a₁ a₂, P (a₁ '* H) (a₂ '* H)) :
∀ a₁ a₂, P a₁ a₂ :=
quot.ind₂ h
variable (H)
proposition image_qproj_self [is_subgroup H] : H / H = '{1} :=
eq_of_subset_of_subset
(image_subset_of_maps_to
(take x, suppose x ∈ H,
show x '* H ∈ '{1},
from mem_singleton_of_eq (qproj_eq_one_of_mem `x ∈ H`)))
(take x, suppose x ∈ '{1},
have x = 1, from eq_of_mem_singleton this,
show x ∈ H / H, by rewrite this; apply mem_image_of_mem _ one_mem)
-- extending a function A → B to a function A / H → B
section respf
variable {H}
variables {f : A → B} (respf : ∀ a₁ a₂, a₁ * H = a₂ * H → f a₁ = f a₂)
definition extend : quotient H → B := quot.lift f respf
proposition extend_qproj (a : A) : extend respf (a '* H) = f a := rfl
proposition extend_comp_qproj : extend respf ∘ (qproj H) = f := rfl
proposition image_extend (G : set A) : (extend respf) ' (G / H) = f ' G :=
by rewrite [-image_comp]
variable [group B]
proposition is_hom_extend [instance] [is_hom f] : is_hom (extend respf) :=
is_mul_hom.mk (take a b,
show (extend respf (a * b)) = (extend respf a) * (extend respf b), from
quot.induction_on₂ a b (take a b, hom_mul f a b))
proposition ker_extend : ker (extend respf) = ker f / H :=
eq_of_subset_of_subset
(quotient_induction
(take a, assume Ha : qproj H a ∈ ker (extend respf),
have f a = 1, from Ha,
show a '* H ∈ ker f / H,
from mem_image_of_mem _ this))
(image_subset_of_maps_to
(take a, assume h : a ∈ ker f,
show extend respf (a '* H) = 1, from h))
end respf
end quotient_group
/- the first homomorphism theorem for the quotient group -/
namespace quotient_group
variables [group A] [group B] (f : A → B) [is_hom f]
lemma eq_of_lcoset_equiv_ker ⦃a b : A⦄ (h : lcoset_equiv (ker f) a b) : f a = f b :=
have b⁻¹ * a ∈ ker f, from inv_mul_mem_of_lcoset_eq_lcoset h,
eq.symm (eq_of_inv_mul_mem_ker this)
definition bar : quotient (ker f) → B := extend (eq_of_lcoset_equiv_ker f)
proposition bar_qproj (a : A) : bar f (a '* ker f) = f a := rfl
proposition is_hom_bar [instance] : is_hom (bar f) := is_hom_extend _
proposition image_bar (G : set A) : bar f ' (G / ker f) = f ' G :=
by rewrite [↑bar, image_extend]
proposition image_bar_univ : bar f ' univ = f ' univ :=
by rewrite [↑bar, -image_eq_univ_of_surjective (surjective_qproj (ker f)),
image_extend]
proposition surj_on_bar : surj_on (bar f) univ (f ' univ) :=
by rewrite [↑surj_on, image_bar_univ]; apply subset.refl
proposition ker_bar_eq : ker (bar f) = '{1} :=
by rewrite [↑bar, ker_extend, image_qproj_self]
proposition injective_bar : injective (bar f) :=
injective_of_ker_eq_singleton_one (ker_bar_eq f)
end quotient_group
/- a generic morphism extension property -/
section
variables [group A] [group B] [group C]
variables (G : set A) [is_subgroup G]
variables (g : A → C) (f : A → B)
noncomputable definition gen_extend : C → B := λ c, f (inv_fun g G 1 c)
variables {G g f}
proposition eq_of_ker_in_subset {a₁ a₂ : A} (a₁G : a₁ ∈ G) (a₂G : a₂ ∈ G)
[is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f) (H' : g a₁ = g a₂) :
f a₁ = f a₂ :=
have memG : a₁⁻¹ * a₂ ∈ G, from mul_mem (inv_mem a₁G) a₂G,
have a₁⁻¹ * a₂ ∈ ker_in g G, from inv_mul_mem_ker_in_of_eq a₁G a₂G H',
have a₁⁻¹ * a₂ ∈ ker_in f G, from and.intro (Hker this) memG,
show f a₁ = f a₂, from eq_of_inv_mul_mem_ker_in a₁G a₂G this
proposition gen_extend_spec [is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f)
{a : A} (aG : a ∈ G) : gen_extend G g f (g a) = f a :=
eq_of_ker_in_subset (inv_fun_spec' aG) aG Hker (inv_fun_spec aG)
proposition is_hom_on_gen_extend [is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f) :
is_hom_on (gen_extend G g f) (g ' G) :=
have is_subgroup (g ' G), from is_subgroup_image g G,
take c₁, assume c₁gG : c₁ ∈ g ' G,
take c₂, assume c₂gG : c₂ ∈ g ' G,
let ginv := inv_fun g G 1 in
have Hginv : maps_to ginv (g ' G) G, from maps_to_inv_fun one_mem,
have ginvc₁ : ginv c₁ ∈ G, from Hginv c₁gG,
have ginvc₂ : ginv c₂ ∈ G, from Hginv c₂gG,
have ginvc₁c₂ : ginv (c₁ * c₂) ∈ G, from Hginv (mul_mem c₁gG c₂gG),
have HH : ∀₀ c ∈ g ' G, g (ginv c) = c,
from λ a aG, right_inv_on_inv_fun_of_surj_on _ (surj_on_image g G) aG,
have eq₁ : g (ginv c₁) = c₁, from HH c₁gG,
have eq₂ : g (ginv c₂) = c₂, from HH c₂gG,
have eq₃ : g (ginv (c₁ * c₂)) = c₁ * c₂, from HH (mul_mem c₁gG c₂gG),
have g (ginv (c₁ * c₂)) = g ((ginv c₁) * (ginv c₂)),
by rewrite [eq₃, hom_on_mul g ginvc₁ ginvc₂, eq₁, eq₂],
have f (ginv (c₁ * c₂)) = f (ginv c₁ * ginv c₂),
from eq_of_ker_in_subset (ginvc₁c₂) (mul_mem ginvc₁ ginvc₂) Hker this,
show f (ginv (c₁ * c₂)) = f (ginv c₁) * f (ginv c₂),
by rewrite [this, hom_on_mul f ginvc₁ ginvc₂]
end
/- quotient by an arbitrary group, not necessarily normal -/
namespace quotient_group_general
variables [group A] (H : set A) [is_subgroup H]
lemma is_normal_to_group_of_normalizer [instance] :
is_normal (to_group_of (normalizer H) ' H) :=
have H1 : is_normal_in (to_group_of (normalizer H) ' H)
(to_group_of (normalizer H) ' (normalizer H)),
from is_normal_in_image_image (subset_normalizer_self H) (to_group_of (normalizer H)),
have H2 : to_group_of (normalizer H) ' (normalizer H) = univ,
from image_to_group_of_eq_univ (normalizer H),
is_normal_of_is_normal_in_univ (by rewrite -H2; exact H1)
section quotient_group
open quotient_group
noncomputable definition quotient : Type := quotient (to_group_of (normalizer H) ' H)
noncomputable definition group_quotient [instance] : group (quotient H) :=
quotient_group.group (to_group_of (normalizer H) ' H)
noncomputable definition qproj : A → quotient H :=
qproj (to_group_of (normalizer H) ' H) ∘ (to_group_of (normalizer H))
infix ` '* `:65 := λ {A' : Type} [group A'] a H' [is_subgroup H'], qproj H' a
infix ` / ` := λ {A' : Type} [group A'] G H' [is_subgroup H'], qproj H' ' G
proposition is_hom_on_qproj [instance] : is_hom_on (qproj H) (normalizer H) :=
have H₀ : is_hom_on (to_group_of (normalizer H)) (normalizer H),
from is_hom_on_to_group_of (normalizer H),
have H₁ : is_hom_on (quotient_group.qproj (to_group_of (normalizer H) ' H)) univ,
from iff.mpr (is_hom_on_univ_iff (quotient_group.qproj (to_group_of (normalizer H) ' H)))
(is_hom_qproj (to_group_of (normalizer H) ' H)),
is_hom_on_comp H₀ H₁ (maps_to_univ (to_group_of (normalizer H)) (normalizer H))
proposition is_hom_on_qproj' [instance] (G : set A) [is_normal_in H G] :
is_hom_on (qproj H) G :=
is_hom_on_of_subset (qproj H) (subset_normalizer G H)
proposition ker_in_qproj : ker_in (qproj H) (normalizer H) = H :=
let tg := to_group_of (normalizer H) in
begin
rewrite [↑ker_in, ker_eq_preimage_one, ↑qproj, preimage_comp, -ker_eq_preimage_one],
have is_hom_on tg H, from is_hom_on_of_subset _ (subset_normalizer_self H),
have is_subgroup (tg ' H), from is_subgroup_image tg H,
krewrite [ker_qproj, to_group_of_preimage_to_group_of_image (subset_normalizer_self H)]
end
end quotient_group
variable {H}
proposition qproj_eq_qproj_iff {a b : A} (Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H) :
a '* H = b '* H ↔ a * H = b * H :=
by rewrite [lcoset_eq_lcoset_iff, eq_iff_inv_mul_mem_ker_in Ha Hb, ker_in_qproj,
-inv_mem_iff, mul_inv, inv_inv]
proposition qproj_eq_qproj {a b : A} (Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H)
(h : a * H = b * H) :
a '* H = b '* H :=
iff.mpr (qproj_eq_qproj_iff Ha Hb) h
proposition lcoset_eq_lcoset_of_qproj_eq_qproj {a b : A}
(Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H) (h : a '* H = b '* H) :
a * H = b * H :=
iff.mp (qproj_eq_qproj_iff Ha Hb) h
variable (H)
proposition qproj_mem {a : A} {G : set A} (aG : a ∈ G) : a '* H ∈ G / H :=
mem_image_of_mem _ aG
proposition qproj_one : 1 '* H = 1 := hom_on_one (qproj H) (normalizer H)
variable {H}
proposition mem_of_qproj_mem {a : A} (anH : a ∈ normalizer H)
{G : set A} (HsubG : H ⊆ G) [is_subgroup G] [is_normal_in H G]
(aHGH : a '* H ∈ G / H): a ∈ G :=
have GH : G ⊆ normalizer H, from subset_normalizer G H,
obtain b [bG (bHeq : b '* H = a '* H)], from aHGH,
have b * H = a * H, from lcoset_eq_lcoset_of_qproj_eq_qproj (GH bG) anH bHeq,
have a ∈ b * H, by rewrite this; apply mem_lcoset_self,
have a ∈ b * G, from lcoset_subset_lcoset b HsubG this,
show a ∈ G, by rewrite [lcoset_eq_self_of_mem bG at this]; apply this
proposition qproj_eq_one_iff {a : A} (Ha : a ∈ normalizer H) : a '* H = 1 ↔ a ∈ H :=
by rewrite [-hom_on_one (qproj H) (normalizer H), qproj_eq_qproj_iff Ha one_mem, one_lcoset,
lcoset_eq_self_iff]
proposition qproj_eq_one_of_mem {a : A} (aH : a ∈ H) : a '* H = 1 :=
iff.mpr (qproj_eq_one_iff (subset_normalizer_self H aH)) aH
proposition mem_of_qproj_eq_one {a : A} (Ha : a ∈ normalizer H) (h : a '* H = 1) : a ∈ H :=
iff.mp (qproj_eq_one_iff Ha) h
variable (H)
section
open quotient_group
proposition surj_on_qproj_normalizer : surj_on (qproj H) (normalizer H) univ :=
have H₀ : surj_on (to_group_of (normalizer H)) (normalizer H) univ,
from surj_on_to_group_of_univ (normalizer H),
have H₁ : surj_on (quotient_group.qproj (to_group_of (normalizer H) ' H)) univ univ,
from surj_on_univ_of_surjective univ (surjective_qproj _),
surj_on_comp H₁ H₀
end
variable {H}
proposition quotient_induction {P : quotient H → Prop} (hyp : ∀₀ a ∈ normalizer H, P (a '* H)) :
∀ a, P a :=
surj_on_univ_induction (surj_on_qproj_normalizer H) hyp
proposition quotient_induction₂ {P : quotient H → quotient H → Prop}
(hyp : ∀₀ a₁ ∈ normalizer H, ∀₀ a₂ ∈ normalizer H, P (a₁ '* H) (a₂ '* H)) :
∀ a₁ a₂, P a₁ a₂ :=
surj_on_univ_induction₂ (surj_on_qproj_normalizer H) hyp
variable (H)
proposition image_qproj_self : H / H = '{1} :=
eq_of_subset_of_subset
(image_subset_of_maps_to
(take x, suppose x ∈ H,
show x '* H ∈ '{1},
from mem_singleton_of_eq (qproj_eq_one_of_mem `x ∈ H`)))
(take x, suppose x ∈ '{1},
have x = 1, from eq_of_mem_singleton this,
show x ∈ H / H,
by rewrite [this, -qproj_one H]; apply mem_image_of_mem _ one_mem)
section respf
variable (H)
variables [group B] (G : set A) [is_subgroup G] (f : A → B)
noncomputable definition extend : quotient H → B := gen_extend G (qproj H) f
variables [is_hom_on f G] [is_normal_in H G]
private proposition aux : is_hom_on (qproj H) G :=
is_hom_on_of_subset (qproj H) (subset_normalizer G H)
local attribute [instance] aux
variables {H f}
private proposition aux' (respf : H ⊆ ker f) : ker_in (qproj H) G ⊆ ker f :=
subset.trans
(show ker_in (qproj H) G ⊆ ker_in (qproj H) (normalizer H),
from inter_subset_inter_left _ (subset_normalizer G H))
(by rewrite [ker_in_qproj]; apply respf)
variable {G}
proposition extend_qproj (respf : H ⊆ ker f) {a : A} (aG : a ∈ G) :
extend H G f (a '* H) = f a :=
gen_extend_spec (aux' G respf) aG
proposition image_extend (respf : H ⊆ ker f) {s : set A} (ssubG : s ⊆ G) :
extend H G f ' (s / H) = f ' s :=
begin
rewrite [-image_comp],
apply image_eq_image_of_eq_on,
intro a amems,
apply extend_qproj respf (ssubG amems)
end
variable (G)
proposition is_hom_on_extend [instance] (respf : H ⊆ ker f) : is_hom_on (extend H G f) (G / H) :=
by unfold extend; apply is_hom_on_gen_extend (aux' G respf)
variable {G}
proposition ker_in_extend [is_subgroup G] (respf : H ⊆ ker f) (HsubG : H ⊆ G) :
ker_in (extend H G f) (G / H) = (ker_in f G) / H :=
begin
apply ext,
intro aH,
cases surj_on_qproj_normalizer H (show aH ∈ univ, from trivial) with a atemp,
cases atemp with anH aHeq,
rewrite -aHeq,
apply iff.intro,
{ intro akerin,
cases akerin with aker ain,
have a '* H ∈ G / H, from ain,
have a ∈ G, from mem_of_qproj_mem anH HsubG this,
have a '* H ∈ ker (extend H G f), from aker,
have extend H G f (a '* H) = 1, from this,
have f a = extend H G f (a '* H), from eq.symm (extend_qproj respf `a ∈ G`),
have f a = 1, by rewrite this; assumption,
have a ∈ ker_in f G, from and.intro this `a ∈ G`,
show a '* H ∈ (ker_in f G) / H, from qproj_mem H this},
intro aHker,
have aker : a ∈ ker_in f G,
begin
have Hsub : H ⊆ ker_in f G, from subset_inter respf HsubG,
have is_normal_in H (ker_in f G),
from subset.trans (inter_subset_right (ker f) G) (subset_normalizer G H),
apply (mem_of_qproj_mem anH Hsub aHker)
end,
have a ∈ G, from and.right aker,
have f a = 1, from and.left aker,
have extend H G f (a '* H) = 1,
from eq.trans (extend_qproj respf `a ∈ G`) this,
show a '* H ∈ ker_in (extend H G f) (G / H),
from and.intro this (qproj_mem H `a ∈ G`)
end
/- (comment from Jeremy)
This version kills the elaborator. I don't know why.
Tracing class instances doesn't show a problem. My best guess is that it is
the backgracking from the "obtain".
proposition ker_in_extend [is_subgroup G] (respf : H ⊆ ker f) (HsubG : H ⊆ G) :
ker_in (extend H G f) (qproj H ' G) = qproj H ' (ker_in f G) :=
ext (take aH,
obtain a [(anH : a ∈ normalizer H) (aHeq : a '* H = aH)],
from surj_on_qproj_normalizer H (show aH ∈ univ, from trivial),
begin
rewrite -aHeq, apply iff.intro, unfold ker_in,
exact
(assume aker : a '* H ∈ ker (extend H G f) ∩ (qproj H ' G),
have a '* H ∈ qproj H ' G, from and.right aker,
have a ∈ G, from mem_of_qproj_mem anH HsubG this,
-- Uncommenting the next line of code slows things down dramatically.
-- Uncommenting the one after kills the system.
-- have a '* H ∈ ker (extend H G f), from and.left aker,
-- have extend H G f (a '* H) = 1, from this,
-- have f a = extend H G f (a '* H), from eq.symm (extend_qproj respf `a ∈ G`),
-- have f a = 1, by rewrite [-this, extend_qproj respf aG],
-- have a ∈ ker_in f G, from and.intro this `a ∈ G`,
show a '* H ∈ qproj H ' (ker_in f G), from sorry),
exact
(assume hyp : a '* H ∈ qproj H ' (ker_in f G),
show a '* H ∈ ker_in (extend H G f) (qproj H ' G), from sorry)
end)
-/
end respf
attribute quotient [irreducible]
end quotient_group_general
/- the first homomorphism theorem for general quotient groups -/
namespace quotient_group_general
variables [group A] [group B] (G : set A) [is_subgroup G]
variables (f : A → B) [is_hom_on f G]
noncomputable definition bar : quotient (ker_in f G) → B :=
extend (ker_in f G) G f
proposition bar_qproj {a : A} (aG : a ∈ G) : bar G f (a '* ker_in f G) = f a :=
extend_qproj (inter_subset_left _ _) aG
proposition is_hom_on_bar [instance] : is_hom_on (bar G f) (G / ker_in f G) :=
have is_subgroup (ker f ∩ G), from is_subgroup_ker_in f G,
have is_normal_in (ker f ∩ G) G, from is_normal_in_ker_in f G,
is_hom_on_extend G (inter_subset_left _ _)
proposition image_bar {s : set A} (ssubG : s ⊆ G) : bar G f ' (s / ker_in f G) = f ' s :=
have is_subgroup (ker f ∩ G), from is_subgroup_ker_in f G,
have is_normal_in (ker f ∩ G) G, from is_normal_in_ker_in f G,
image_extend (inter_subset_left _ _) ssubG
proposition surj_on_bar : surj_on (bar G f) (G / ker_in f G) (f ' G) :=
by rewrite [↑surj_on, image_bar G f (@subset.refl _ G)]; apply subset.refl
proposition ker_in_bar : ker_in (bar G f) (G / ker_in f G) = '{1} :=
have H₀ : ker_in f G ⊆ ker f, from inter_subset_left _ _,
have H₁ : ker_in f G ⊆ G, from inter_subset_right _ _,
by rewrite [↑bar, ker_in_extend H₀ H₁, image_qproj_self]
proposition inj_on_bar : inj_on (bar G f) (G / ker_in f G) :=
inj_on_of_ker_in_eq_singleton_one (ker_in_bar G f)
end quotient_group_general
end group_theory