2016-03-07 00:41:58 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Ulrik Buchholtz, Egbert Rijke
|
|
|
|
|
|
|
|
|
|
The H-space structure on S³ and the quaternionic Hopf fibration
|
|
|
|
|
(using the imaginaroid structure on S⁰).
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
import .complex_hopf .imaginaroid
|
|
|
|
|
|
|
|
|
|
open eq equiv is_equiv circle is_conn trunc is_trunc sphere_index sphere susp
|
|
|
|
|
open imaginaroid
|
|
|
|
|
|
|
|
|
|
namespace hopf
|
|
|
|
|
|
|
|
|
|
definition involutive_neg_empty [instance] : involutive_neg empty :=
|
|
|
|
|
⦃ involutive_neg, neg := empty.elim, neg_neg := by intro a; induction a ⦄
|
|
|
|
|
|
|
|
|
|
definition involutive_neg_circle [instance] : involutive_neg circle :=
|
2016-04-22 19:12:25 +00:00
|
|
|
|
by change involutive_neg (susp (susp empty)); exact _
|
2016-03-07 00:41:58 +00:00
|
|
|
|
|
|
|
|
|
definition has_star_circle [instance] : has_star circle :=
|
2016-04-22 19:12:25 +00:00
|
|
|
|
by change has_star (susp (susp empty)); exact _
|
2016-03-07 00:41:58 +00:00
|
|
|
|
|
|
|
|
|
-- this is the "natural" conjugation defined using the base-loop recursor
|
|
|
|
|
definition circle_star [reducible] : S¹ → S¹ :=
|
|
|
|
|
circle.elim base loop⁻¹
|
|
|
|
|
|
|
|
|
|
definition circle_neg_id (x : S¹) : -x = x :=
|
|
|
|
|
begin
|
|
|
|
|
fapply (rec2_on x),
|
|
|
|
|
{ exact seg2⁻¹ },
|
|
|
|
|
{ exact seg1 },
|
|
|
|
|
{ apply eq_pathover, rewrite ap_id, krewrite elim_merid,
|
|
|
|
|
apply square_of_eq, reflexivity },
|
|
|
|
|
{ apply eq_pathover, rewrite ap_id, krewrite elim_merid,
|
|
|
|
|
apply square_of_eq, apply trans (con.left_inv seg2),
|
|
|
|
|
apply inverse, exact con.left_inv seg1 }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition circle_mul_neg (x y : S¹) : x * (-y) = - x * y :=
|
|
|
|
|
by rewrite [circle_neg_id,circle_neg_id]
|
|
|
|
|
|
|
|
|
|
definition circle_star_eq (x : S¹) : x* = circle_star x :=
|
|
|
|
|
begin
|
|
|
|
|
fapply (rec2_on x),
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact seg2⁻¹ ⬝ (tr_constant seg1 base)⁻¹ },
|
|
|
|
|
{ apply eq_pathover, krewrite elim_merid, rewrite elim_seg1,
|
|
|
|
|
apply square_of_eq, apply trans
|
|
|
|
|
(ap (λw, w ⬝ (tr_constant seg1 base)⁻¹) (con.right_inv seg2)⁻¹),
|
|
|
|
|
apply con.assoc },
|
|
|
|
|
{ apply eq_pathover, krewrite elim_merid, rewrite elim_seg2,
|
|
|
|
|
apply square_of_eq, rewrite [↑loop,con_inv,inv_inv,idp_con],
|
|
|
|
|
apply con.assoc }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open prod prod.ops
|
|
|
|
|
|
|
|
|
|
definition circle_norm (x : S¹) : x * x* = 1 :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite circle_star_eq, induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ apply eq_pathover, rewrite ap_constant,
|
|
|
|
|
krewrite [ap_compose' (λz : S¹ × S¹, circle_mul z.1 z.2)
|
|
|
|
|
(λa : S¹, (a, circle_star a))],
|
|
|
|
|
rewrite [ap_compose' (prod_functor (λa : S¹, a) circle_star)
|
|
|
|
|
(λa : S¹, (a, a))],
|
|
|
|
|
rewrite ap_diagonal,
|
|
|
|
|
krewrite [ap_prod_functor (λa : S¹, a) circle_star loop loop],
|
|
|
|
|
rewrite [ap_id,↑circle_star], krewrite elim_loop,
|
|
|
|
|
krewrite (ap_binary circle_mul loop loop⁻¹),
|
|
|
|
|
rewrite [ap_inv,↑circle_mul,elim_loop,ap_id,↑circle_turn,con.left_inv],
|
|
|
|
|
constructor }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition circle_star_mul (x y : S¹) : (x * y)* = y* * x* :=
|
|
|
|
|
begin
|
|
|
|
|
induction x,
|
|
|
|
|
{ apply inverse, exact circle_mul_base (y*) },
|
|
|
|
|
{ apply eq_pathover, induction y,
|
2016-04-22 19:12:25 +00:00
|
|
|
|
{ exact natural_square_tr
|
2016-03-07 00:41:58 +00:00
|
|
|
|
(λa : S¹, ap (λb : S¹, b*) (circle_mul_base a)) loop },
|
|
|
|
|
{ apply is_prop.elimo } }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition imaginaroid_sphere_zero [instance]
|
|
|
|
|
: imaginaroid (sphere (-1.+1)) :=
|
|
|
|
|
⦃ imaginaroid,
|
|
|
|
|
neg_neg := susp_neg_neg,
|
|
|
|
|
mul := circle_mul,
|
|
|
|
|
one_mul := circle_base_mul,
|
|
|
|
|
mul_one := circle_mul_base,
|
|
|
|
|
mul_neg := circle_mul_neg,
|
|
|
|
|
norm := circle_norm,
|
|
|
|
|
star_mul := circle_star_mul ⦄
|
|
|
|
|
|
|
|
|
|
local attribute sphere [reducible]
|
|
|
|
|
open sphere.ops
|
|
|
|
|
|
|
|
|
|
definition sphere_three_h_space [instance] : h_space (S 3) :=
|
|
|
|
|
@h_space_equiv_closed (join S¹ S¹)
|
|
|
|
|
(cd_h_space (S -1.+1) circle_assoc) (S 3) (join.spheres 1 1)
|
|
|
|
|
|
|
|
|
|
definition is_conn_sphere_three : is_conn 0 (S 3) :=
|
|
|
|
|
begin
|
2016-03-11 00:53:42 +00:00
|
|
|
|
have le02 : trunc_index.le 0 2,
|
|
|
|
|
from trunc_index.le.step
|
|
|
|
|
(trunc_index.le.step (trunc_index.le.tr_refl 0)),
|
|
|
|
|
exact @is_conn_of_le (S 3) 0 2 le02 (is_conn_sphere 3)
|
|
|
|
|
-- apply is_conn_of_le (S 3) le02
|
|
|
|
|
-- doesn't find is_conn_sphere instance
|
2016-03-07 00:41:58 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
local attribute is_conn_sphere_three [instance]
|
|
|
|
|
|
|
|
|
|
definition quaternionic_hopf : S 7 → S 4 :=
|
|
|
|
|
begin
|
|
|
|
|
intro x, apply @sigma.pr1 (susp (S 3)) (hopf (S 3)),
|
|
|
|
|
apply inv (hopf.total (S 3)), apply inv (join.spheres 3 3), exact x
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end hopf
|