152 lines
4.7 KiB
Text
152 lines
4.7 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
|
|||
|
Module: init.hit
|
|||
|
Authors: Floris van Doorn
|
|||
|
|
|||
|
Declaration of hits
|
|||
|
-/
|
|||
|
|
|||
|
structure diagram [class] :=
|
|||
|
(Iob : Type)
|
|||
|
(Ihom : Type)
|
|||
|
(ob : Iob → Type)
|
|||
|
(dom cod : Ihom → Iob)
|
|||
|
(hom : Π(j : Ihom), ob (dom j) → ob (cod j))
|
|||
|
|
|||
|
open eq diagram
|
|||
|
|
|||
|
-- structure col (D : diagram) :=
|
|||
|
-- (incl : Π{i : Iob}, ob i)
|
|||
|
-- (eq_endpoint : Π{j : Ihom} (x : ob (dom j)), ob (cod j))
|
|||
|
-- set_option pp.universes true
|
|||
|
-- check @diagram
|
|||
|
-- check @col
|
|||
|
|
|||
|
constant colimit.{u v w} : diagram.{u v w} → Type.{max u v w}
|
|||
|
|
|||
|
namespace colimit
|
|||
|
|
|||
|
constant inclusion : Π [D : diagram] {i : Iob}, ob i → colimit D
|
|||
|
abbreviation ι := @inclusion
|
|||
|
|
|||
|
constant cglue : Π [D : diagram] (j : Ihom) (x : ob (dom j)), ι (hom j x) = ι x
|
|||
|
|
|||
|
/-protected-/ constant rec : Π [D : diagram] {P : colimit D → Type}
|
|||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
|||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
|||
|
(y : colimit D), P y
|
|||
|
|
|||
|
-- {P : my_colim f → Type} (Hinc : Π⦃n : ℕ⦄ (a : A n), P (inc f a))
|
|||
|
-- (Heq : Π(n : ℕ) (a : A n), inc_eq f a ▹ Hinc (f a) = Hinc a) : Πaa, P aa
|
|||
|
-- init_hit
|
|||
|
|
|||
|
definition comp_incl [D : diagram] {P : colimit D → Type}
|
|||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
|||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
|||
|
{i : Iob} (x : ob i) : rec Pincl Pglue (ι x) = Pincl x :=
|
|||
|
sorry --idp
|
|||
|
|
|||
|
--set_option pp.notation false
|
|||
|
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
|||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
|||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
|||
|
{j : Ihom} (x : ob (dom j)) : apd (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
|||
|
--the sorry's in the statement can be removed when comp_incl is definitional
|
|||
|
sorry --idp
|
|||
|
|
|||
|
protected definition rec_on [D : diagram] {P : colimit D → Type} (y : colimit D)
|
|||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
|||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x) : P y :=
|
|||
|
colimit.rec Pincl Pglue y
|
|||
|
|
|||
|
end colimit
|
|||
|
|
|||
|
open colimit bool
|
|||
|
|
|||
|
namespace pushout
|
|||
|
section
|
|||
|
|
|||
|
universe u
|
|||
|
parameters {TL BL TR : Type.{u}} (f : TL → BL) (g : TL → TR)
|
|||
|
|
|||
|
inductive pushout_ob :=
|
|||
|
| tl : pushout_ob
|
|||
|
| bl : pushout_ob
|
|||
|
| tr : pushout_ob
|
|||
|
|
|||
|
open pushout_ob
|
|||
|
|
|||
|
definition pushout_diag [reducible] : diagram :=
|
|||
|
diagram.mk pushout_ob
|
|||
|
bool
|
|||
|
(λi, pushout_ob.rec_on i TL BL TR)
|
|||
|
(λj, bool.rec_on j tl tl)
|
|||
|
(λj, bool.rec_on j bl tr)
|
|||
|
(λj, bool.rec_on j f g)
|
|||
|
|
|||
|
local notation `D` := pushout_diag
|
|||
|
-- open bool
|
|||
|
-- definition pushout_diag : diagram :=
|
|||
|
-- diagram.mk pushout_ob
|
|||
|
-- bool
|
|||
|
-- (λi, match i with | tl := TL | tr := TR | bl := BL end)
|
|||
|
-- (λj, match j with | tt := tl | ff := tl end)
|
|||
|
-- (λj, match j with | tt := bl | ff := tr end)
|
|||
|
-- (λj, match j with | tt := f | ff := g end)
|
|||
|
|
|||
|
definition pushout := colimit pushout_diag
|
|||
|
local attribute pushout_diag [instance]
|
|||
|
|
|||
|
definition inl (x : BL) : pushout :=
|
|||
|
@ι _ _ x
|
|||
|
|
|||
|
definition inr (x : TR) : pushout :=
|
|||
|
@ι _ _ x
|
|||
|
|
|||
|
definition coherence (x : TL) : inl (f x) = @ι _ _ x :=
|
|||
|
@cglue _ _ x
|
|||
|
|
|||
|
definition glue (x : TL) : inl (f x) = inr (g x) :=
|
|||
|
@cglue _ _ x ⬝ (@cglue _ _ x)⁻¹
|
|||
|
|
|||
|
set_option pp.notation false
|
|||
|
protected theorem rec {P : pushout → Type} --make def
|
|||
|
(Pinl : Π(x : BL), P (inl x))
|
|||
|
(Pinr : Π(x : TR), P (inr x))
|
|||
|
(Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
|||
|
(y : pushout) : P y :=
|
|||
|
begin
|
|||
|
fapply (@colimit.rec_on _ _ y),
|
|||
|
{ intros [i, x], cases i,
|
|||
|
exact (coherence x ▹ Pinl (f x)),
|
|||
|
apply Pinl,
|
|||
|
apply Pinr},
|
|||
|
{ intros [j, x], cases j,
|
|||
|
exact idp,
|
|||
|
esimp [pushout_ob.cases_on],
|
|||
|
apply concat, rotate 1, apply (idpath (coherence x ▹ Pinl (f x))),
|
|||
|
apply concat, apply (ap (transport _ _)), apply (idpath (Pinr (g x))),
|
|||
|
apply eq_tr_of_inv_tr_eq,
|
|||
|
rewrite -{(transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))}con_tr,
|
|||
|
apply sorry
|
|||
|
}
|
|||
|
end
|
|||
|
|
|||
|
example
|
|||
|
{P : pushout → Type}
|
|||
|
{Pinl : Π (x : BL), P (inl x)}
|
|||
|
{Pinr : Π (x : TR), P (inr x)}
|
|||
|
{Pglue : Π (x : TL), eq (transport (λ (x : pushout), P x) (glue x) (Pinl (f x))) (Pinr (g x))}
|
|||
|
{y : pushout}
|
|||
|
{x : @ob _ (@dom _ tt)}
|
|||
|
: eq (transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))
|
|||
|
(Pinl (f x)) :=
|
|||
|
begin
|
|||
|
rewrite -{(transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))}con_tr,
|
|||
|
apply sorry
|
|||
|
end
|
|||
|
|
|||
|
exit
|