lean2/library/data/nat/basic.lean

376 lines
12 KiB
Text
Raw Normal View History

--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn
-- data.nat.basic
-- ==============
--
-- Basic operations on the natural numbers.
import logic data.num tools.tactic struc.binary tools.helper_tactics
open tactic binary eq_ops
open decidable (hiding induction_on rec_on)
open relation -- for subst_iff
open helper_tactics
-- Definition of the type
-- ----------------------
inductive nat : Type :=
zero : nat,
succ : nat → nat
namespace nat
notation `` := nat
theorem rec_zero {P : → Type} (x : P zero) (f : ∀m, P m → P (succ m)) : nat.rec x f zero = x
theorem rec_succ {P : → Type} (x : P zero) (f : ∀m, P m → P (succ m)) (n : ) :
nat.rec x f (succ n) = f n (nat.rec x f n)
theorem induction_on [protected] {P : → Prop} (a : ) (H1 : P zero) (H2 : ∀ (n : ) (IH : P n), P (succ n)) :
P a :=
nat.rec H1 H2 a
definition rec_on [protected] {P : → Type} (n : ) (H1 : P zero) (H2 : ∀m, P m → P (succ m)) : P n :=
nat.rec H1 H2 n
-- Coercion from num
-- -----------------
abbreviation plus (x y : ) : :=
nat.rec x (λ n r, succ r) y
definition to_nat [coercion] [inline] (n : num) : :=
num.rec zero
(λ n, pos_num.rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n
-- Successor and predecessor
-- -------------------------
theorem succ_ne_zero {n : } : succ n ≠ 0 :=
assume H : succ n = 0,
have H2 : true = false, from
let f := (nat.rec false (fun a b, true)) in
calc
true = f (succ n) : rfl
... = f 0 : {H}
... = false : rfl,
absurd H2 true_ne_false
-- add_rewrite succ_ne_zero
definition pred (n : ) := nat.rec 0 (fun m x, m) n
theorem pred_zero : pred 0 = 0
theorem pred_succ {n : } : pred (succ n) = n
opaque_hint (hiding pred)
theorem zero_or_succ_pred (n : ) : n = 0 n = succ (pred n) :=
induction_on n
(or.inl rfl)
(take m IH, or.inr
(show succ m = succ (pred (succ m)), from congr_arg succ pred_succ⁻¹))
theorem zero_or_exists_succ (n : ) : n = 0 ∃k, n = succ k :=
or.imp_or (zero_or_succ_pred n) (assume H, H)
(assume H : n = succ (pred n), exists_intro (pred n) H)
theorem case {P : → Prop} (n : ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
induction_on n H1 (take m IH, H2 m)
theorem discriminate {B : Prop} {n : } (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
or.elim (zero_or_succ_pred n)
(take H3 : n = 0, H1 H3)
(take H3 : n = succ (pred n), H2 (pred n) H3)
theorem succ_inj {n m : } (H : succ n = succ m) : n = m :=
calc
n = pred (succ n) : pred_succ⁻¹
... = pred (succ m) : {H}
... = m : pred_succ
theorem succ_ne_self {n : } : succ n ≠ n :=
induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from succ_ne_zero,
absurd H ne)
(take k IH H, IH (succ_inj H))
theorem decidable_eq [instance] (n m : ) : decidable (n = m) :=
have general : ∀n, decidable (n = m), from
rec_on m
(take n,
rec_on n
(inl rfl)
(λ m iH, inr succ_ne_zero))
(λ (m' : ) (iH1 : ∀n, decidable (n = m')),
take n, rec_on n
(inr (ne.symm succ_ne_zero))
(λ (n' : ) (iH2 : decidable (n' = succ m')),
have d1 : decidable (n' = m'), from iH1 n',
decidable.rec_on d1
(assume Heq : n' = m', inl (congr_arg succ Heq))
(assume Hne : n' ≠ m',
have H1 : succ n' ≠ succ m', from
assume Heq, absurd (succ_inj Heq) Hne,
inr H1))),
general n
theorem two_step_induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
have stronger : P a ∧ P (succ a), from
induction_on a
(and.intro H1 H2)
(take k IH,
have IH1 : P k, from and.elim_left IH,
have IH2 : P (succ k), from and.elim_right IH,
and.intro IH2 (H3 k IH1 IH2)),
and.elim_left stronger
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
have general : ∀m, P n m, from induction_on n
(take m : , H1 m)
(take k : ,
assume IH : ∀m, P k m,
take m : ,
discriminate
(assume Hm : m = 0, Hm⁻¹ ▸ (H2 k))
(take l : , assume Hm : m = succ l, Hm⁻¹ ▸ (H3 k l (IH l)))),
general m
-- Addition
-- --------
definition add (x y : ) : := plus x y
infixl `+` := add
theorem add_zero_right {n : } : n + 0 = n
theorem add_succ_right {n m : } : n + succ m = succ (n + m)
opaque_hint (hiding add)
theorem add_zero_left {n : } : 0 + n = n :=
induction_on n
add_zero_right
(take m IH, show 0 + succ m = succ m, from
calc
0 + succ m = succ (0 + m) : add_succ_right
... = succ m : {IH})
theorem add_succ_left {n m : } : (succ n) + m = succ (n + m) :=
induction_on m
(add_zero_right ▸ add_zero_right)
(take k IH, calc
succ n + succ k = succ (succ n + k) : add_succ_right
... = succ (succ (n + k)) : {IH}
... = succ (n + succ k) : {add_succ_right⁻¹})
theorem add_comm {n m : } : n + m = m + n :=
induction_on m
(add_zero_right ⬝ add_zero_left⁻¹)
(take k IH, calc
n + succ k = succ (n+k) : add_succ_right
... = succ (k + n) : {IH}
... = succ k + n : add_succ_left⁻¹)
theorem add_move_succ {n m : } : succ n + m = n + succ m :=
add_succ_left ⬝ add_succ_right⁻¹
theorem add_comm_succ {n m : } : n + succ m = m + succ n :=
add_move_succ⁻¹ ⬝ add_comm
theorem add_assoc {n m k : } : (n + m) + k = n + (m + k) :=
induction_on k
(add_zero_right ▸ add_zero_right)
(take l IH,
calc
(n + m) + succ l = succ ((n + m) + l) : add_succ_right
... = succ (n + (m + l)) : {IH}
... = n + succ (m + l) : add_succ_right⁻¹
... = n + (m + succ l) : {add_succ_right⁻¹})
theorem add_left_comm {n m k : } : n + (m + k) = m + (n + k) :=
left_comm @add_comm @add_assoc n m k
theorem add_right_comm {n m k : } : n + m + k = n + k + m :=
right_comm @add_comm @add_assoc n m k
-- add_rewrite add_zero_left add_zero_right
-- add_rewrite add_succ_left add_succ_right
-- add_rewrite add_comm add_assoc add_left_comm
-- ### cancelation
theorem add_cancel_left {n m k : } : n + m = n + k → m = k :=
induction_on n
(take H : 0 + m = 0 + k,
add_zero_left⁻¹ ⬝ H ⬝ add_zero_left)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k),
from calc
succ (n + m) = succ n + m : add_succ_left⁻¹
... = succ n + k : H
... = succ (n + k) : add_succ_left,
have H3 : n + m = n + k, from succ_inj H2,
IH H3)
theorem add_cancel_right {n m k : } (H : n + m = k + m) : n = k :=
have H2 : m + n = m + k, from add_comm ⬝ H ⬝ add_comm,
add_cancel_left H2
theorem add_eq_zero_left {n m : } : n + m = 0 → n = 0 :=
induction_on n
(take (H : 0 + m = 0), rfl)
(take k IH,
assume H : succ k + m = 0,
absurd
(show succ (k + m) = 0, from calc
succ (k + m) = succ k + m : add_succ_left⁻¹
... = 0 : H)
succ_ne_zero)
theorem add_eq_zero_right {n m : } (H : n + m = 0) : m = 0 :=
add_eq_zero_left (add_comm ⬝ H)
theorem add_eq_zero {n m : } (H : n + m = 0) : n = 0 ∧ m = 0 :=
and.intro (add_eq_zero_left H) (add_eq_zero_right H)
-- ### misc
theorem add_one {n : } : n + 1 = succ n :=
add_zero_right ▸ add_succ_right
theorem add_one_left {n : } : 1 + n = succ n :=
add_zero_left ▸ add_succ_left
-- TODO: rename? remove?
theorem induction_plus_one {P : nat → Prop} (a : ) (H1 : P 0)
(H2 : ∀ (n : ) (IH : P n), P (n + 1)) : P a :=
nat.rec H1 (take n IH, add_one ▸ (H2 n IH)) a
-- Multiplication
-- --------------
definition mul (n m : ) := nat.rec 0 (fun m x, x + n) m
infixl `*` := mul
theorem mul_zero_right {n : } : n * 0 = 0
theorem mul_succ_right {n m : } : n * succ m = n * m + n
opaque_hint (hiding mul)
-- ### commutativity, distributivity, associativity, identity
theorem mul_zero_left {n : } : 0 * n = 0 :=
induction_on n
mul_zero_right
(take m IH, mul_succ_right ⬝ add_zero_right ⬝ IH)
theorem mul_succ_left {n m : } : (succ n) * m = (n * m) + m :=
induction_on m
(mul_zero_right ⬝ mul_zero_right⁻¹ ⬝ add_zero_right⁻¹)
(take k IH, calc
succ n * succ k = (succ n * k) + succ n : mul_succ_right
... = (n * k) + k + succ n : {IH}
... = (n * k) + (k + succ n) : add_assoc
... = (n * k) + (n + succ k) : {add_comm_succ}
... = (n * k) + n + succ k : add_assoc⁻¹
... = (n * succ k) + succ k : {mul_succ_right⁻¹})
theorem mul_comm {n m : } : n * m = m * n :=
induction_on m
(mul_zero_right ⬝ mul_zero_left⁻¹)
(take k IH, calc
n * succ k = n * k + n : mul_succ_right
... = k * n + n : {IH}
... = (succ k) * n : mul_succ_left⁻¹)
theorem mul_distr_right {n m k : } : (n + m) * k = n * k + m * k :=
induction_on k
(calc
(n + m) * 0 = 0 : mul_zero_right
... = 0 + 0 : add_zero_right⁻¹
... = n * 0 + 0 : {mul_zero_right⁻¹}
... = n * 0 + m * 0 : {mul_zero_right⁻¹})
(take l IH, calc
(n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right
... = n * l + m * l + (n + m) : {IH}
... = n * l + m * l + n + m : add_assoc⁻¹
... = n * l + n + m * l + m : {add_right_comm}
... = n * l + n + (m * l + m) : add_assoc
... = n * succ l + (m * l + m) : {mul_succ_right⁻¹}
... = n * succ l + m * succ l : {mul_succ_right⁻¹})
theorem mul_distr_left {n m k : } : n * (m + k) = n * m + n * k :=
calc
n * (m + k) = (m + k) * n : mul_comm
... = m * n + k * n : mul_distr_right
... = n * m + k * n : {mul_comm}
... = n * m + n * k : {mul_comm}
theorem mul_assoc {n m k : } : (n * m) * k = n * (m * k) :=
induction_on k
(calc
(n * m) * 0 = 0 : mul_zero_right
... = n * 0 : mul_zero_right⁻¹
... = n * (m * 0) : {mul_zero_right⁻¹})
(take l IH,
calc
(n * m) * succ l = (n * m) * l + n * m : mul_succ_right
... = n * (m * l) + n * m : {IH}
... = n * (m * l + m) : mul_distr_left⁻¹
... = n * (m * succ l) : {mul_succ_right⁻¹})
theorem mul_left_comm {n m k : } : n * (m * k) = m * (n * k) :=
left_comm @mul_comm @mul_assoc n m k
theorem mul_right_comm {n m k : } : n * m * k = n * k * m :=
right_comm @mul_comm @mul_assoc n m k
theorem mul_one_right {n : } : n * 1 = n :=
calc
n * 1 = n * 0 + n : mul_succ_right
... = 0 + n : {mul_zero_right}
... = n : add_zero_left
theorem mul_one_left {n : } : 1 * n = n :=
calc
1 * n = n * 1 : mul_comm
... = n : mul_one_right
theorem mul_eq_zero {n m : } (H : n * m = 0) : n = 0 m = 0 :=
discriminate
(take Hn : n = 0, or.inl Hn)
(take (k : ),
assume (Hk : n = succ k),
discriminate
(take (Hm : m = 0), or.inr Hm)
(take (l : ),
assume (Hl : m = succ l),
have Heq : succ (k * succ l + l) = n * m, from
(calc
n * m = n * succ l : {Hl}
... = succ k * succ l : {Hk}
... = k * succ l + succ l : mul_succ_left
... = succ (k * succ l + l) : add_succ_right)⁻¹,
absurd (Heq ⬝ H) succ_ne_zero))
---other inversion theorems appear below
-- add_rewrite mul_zero_left mul_zero_right mul_one_right mul_one_left
-- add_rewrite mul_succ_left mul_succ_right
-- add_rewrite mul_comm mul_assoc mul_left_comm
-- add_rewrite mul_distr_right mul_distr_left
end nat