2015-06-26 02:27:03 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
|
|
|
Declaration of the torus
|
|
|
|
-/
|
|
|
|
|
|
|
|
import .two_quotient
|
|
|
|
|
|
|
|
open two_quotient eq bool unit relation
|
|
|
|
|
|
|
|
namespace torus
|
|
|
|
|
|
|
|
definition torus_R (x y : unit) := bool
|
|
|
|
local infix `⬝r`:75 := @e_closure.trans unit torus_R star star star
|
|
|
|
local postfix `⁻¹ʳ`:(max+10) := @e_closure.symm unit torus_R star star
|
|
|
|
local notation `[`:max a `]`:0 := @e_closure.of_rel unit torus_R star star a
|
|
|
|
|
|
|
|
inductive torus_Q : Π⦃x y : unit⦄, e_closure torus_R x y → e_closure torus_R x y → Type :=
|
|
|
|
| Qmk : torus_Q ([ff] ⬝r [tt]) ([tt] ⬝r [ff])
|
|
|
|
|
|
|
|
definition torus := two_quotient torus_R torus_Q
|
|
|
|
definition base : torus := incl0 _ _ star
|
|
|
|
definition loop1 : base = base := incl1 _ _ ff
|
|
|
|
definition loop2 : base = base := incl1 _ _ tt
|
|
|
|
definition surf : loop1 ⬝ loop2 = loop2 ⬝ loop1 :=
|
|
|
|
incl2 _ _ torus_Q.Qmk
|
|
|
|
|
|
|
|
-- protected definition rec {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
|
|
|
|
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
|
|
|
|
-- (x : torus) : P x :=
|
|
|
|
-- sorry
|
|
|
|
|
|
|
|
-- example {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb)
|
|
|
|
-- (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) : torus.rec Pb Pl1 Pl2 Pf base = Pb := idp
|
|
|
|
|
|
|
|
-- definition rec_loop1 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
|
|
|
|
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
|
|
|
|
-- : apdo (torus.rec Pb Pl1 Pl2 Pf) loop1 = Pl1 :=
|
|
|
|
-- sorry
|
|
|
|
|
|
|
|
-- definition rec_loop2 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
|
|
|
|
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
|
|
|
|
-- : apdo (torus.rec Pb Pl1 Pl2 Pf) loop2 = Pl2 :=
|
|
|
|
-- sorry
|
|
|
|
|
|
|
|
-- definition rec_surf {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
|
|
|
|
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
|
|
|
|
-- : cubeover P rfl1 (apds (torus.rec Pb Pl1 Pl2 Pf) fill) Pf
|
|
|
|
-- (vdeg_squareover !rec_loop2) (vdeg_squareover !rec_loop2)
|
|
|
|
-- (vdeg_squareover !rec_loop1) (vdeg_squareover !rec_loop1) :=
|
|
|
|
-- sorry
|
|
|
|
|
|
|
|
protected definition elim {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
|
|
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) (x : torus) : P :=
|
|
|
|
begin
|
|
|
|
induction x,
|
|
|
|
{ exact Pb},
|
|
|
|
{ induction s,
|
|
|
|
{ exact Pl1},
|
|
|
|
{ exact Pl2}},
|
|
|
|
{ induction q, exact Ps},
|
|
|
|
end
|
|
|
|
|
|
|
|
protected definition elim_on [reducible] {P : Type} (x : torus) (Pb : P)
|
|
|
|
(Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : P :=
|
|
|
|
torus.elim Pb Pl1 Pl2 Ps x
|
|
|
|
|
|
|
|
definition elim_loop1 {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
|
|
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop1 = Pl1 :=
|
|
|
|
!elim_incl1
|
|
|
|
|
|
|
|
definition elim_loop2 {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
|
|
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop2 = Pl2 :=
|
|
|
|
!elim_incl1
|
|
|
|
|
|
|
|
definition elim_surf {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
|
|
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1)
|
2015-08-04 17:00:12 +00:00
|
|
|
: square (ap02 (torus.elim Pb Pl1 Pl2 Ps) surf)
|
|
|
|
Ps
|
|
|
|
(!ap_con ⬝ (!elim_loop1 ◾ !elim_loop2))
|
|
|
|
(!ap_con ⬝ (!elim_loop2 ◾ !elim_loop1)) :=
|
2015-06-26 02:27:03 +00:00
|
|
|
!elim_incl2
|
|
|
|
|
|
|
|
end torus
|
|
|
|
|
|
|
|
attribute torus.base [constructor]
|
2015-07-07 23:37:06 +00:00
|
|
|
attribute /-torus.rec-/ torus.elim [unfold 6] [recursor 6]
|
|
|
|
--attribute torus.elim_type [unfold 9]
|
|
|
|
attribute /-torus.rec_on-/ torus.elim_on [unfold 2]
|
|
|
|
--attribute torus.elim_type_on [unfold 6]
|