2015-11-26 07:45:08 +00:00
|
|
|
constant f : nat → nat → nat
|
|
|
|
|
|
|
|
definition lemma1 [forward] {a b : nat} : f a b = a :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
print lemma1
|
|
|
|
|
|
|
|
definition lemma2 [forward] {a b : nat} : f a b = f b a :=
|
|
|
|
sorry
|
|
|
|
|
2015-11-26 19:41:56 +00:00
|
|
|
definition lemma3 {a b : nat} : (:f a b:) = f b a :=
|
2015-11-26 07:45:08 +00:00
|
|
|
sorry
|
|
|
|
|
|
|
|
print lemma2
|
|
|
|
print lemma3
|
|
|
|
|
|
|
|
definition lemma4 [forward] {a b c : nat} : f a b = f a c :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
print lemma4
|