459 lines
22 KiB
Text
459 lines
22 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Leonardo de Moura
|
|||
|
|
|||
|
Finite bags.
|
|||
|
-/
|
|||
|
import data.nat data.list.perm data.subtype algebra.binary
|
|||
|
open nat quot list subtype binary function eq.ops
|
|||
|
open [declarations] perm
|
|||
|
|
|||
|
variable {A : Type}
|
|||
|
|
|||
|
definition bag.setoid [instance] (A : Type) : setoid (list A) :=
|
|||
|
setoid.mk (@perm A) (mk_equivalence (@perm A) (@perm.refl A) (@perm.symm A) (@perm.trans A))
|
|||
|
|
|||
|
definition bag (A : Type) : Type :=
|
|||
|
quot (bag.setoid A)
|
|||
|
|
|||
|
namespace bag
|
|||
|
definition of_list (l : list A) : bag A :=
|
|||
|
⟦l⟧
|
|||
|
|
|||
|
definition empty : bag A :=
|
|||
|
of_list nil
|
|||
|
|
|||
|
definition singleton (a : A) : bag A :=
|
|||
|
of_list [a]
|
|||
|
|
|||
|
definition insert (a : A) (b : bag A) : bag A :=
|
|||
|
quot.lift_on b (λ l, ⟦a::l⟧)
|
|||
|
(λ l₁ l₂ h, quot.sound (perm.skip a h))
|
|||
|
|
|||
|
lemma insert_empty_eq_singleton (a : A) : insert a empty = singleton a :=
|
|||
|
rfl
|
|||
|
|
|||
|
definition append (b₁ b₂ : bag A) : bag A :=
|
|||
|
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦l₁++l₂⟧)
|
|||
|
(λ l₁ l₂ l₃ l₄ h₁ h₂, quot.sound (perm_app h₁ h₂))
|
|||
|
|
|||
|
infix ++ := append
|
|||
|
|
|||
|
lemma append.comm (b₁ b₂ : bag A) : b₁ ++ b₂ = b₂ ++ b₁ :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, quot.sound !perm_app_comm)
|
|||
|
|
|||
|
lemma append.assoc (b₁ b₂ b₃ : bag A) : (b₁ ++ b₂) ++ b₃ = b₁ ++ (b₂ ++ b₃) :=
|
|||
|
quot.induction_on₃ b₁ b₂ b₃ (λ l₁ l₂ l₃, quot.sound (by rewrite list.append.assoc; apply perm.refl))
|
|||
|
|
|||
|
lemma append_empty_left (b : bag A) : empty ++ b = b :=
|
|||
|
quot.induction_on b (λ l, quot.sound (by rewrite append_nil_left; apply perm.refl))
|
|||
|
|
|||
|
lemma append_empty_right (b : bag A) : b ++ empty = b :=
|
|||
|
quot.induction_on b (λ l, quot.sound (by rewrite append_nil_right; apply perm.refl))
|
|||
|
|
|||
|
lemma append_insert_left (a : A) (b₁ b₂ : bag A) : insert a b₁ ++ b₂ = insert a (b₁ ++ b₂) :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, quot.sound (by rewrite append_cons; apply perm.refl))
|
|||
|
|
|||
|
lemma append_insert_right (a : A) (b₁ b₂ : bag A) : b₁ ++ insert a b₂ = insert a (b₁ ++ b₂) :=
|
|||
|
calc b₁ ++ insert a b₂ = insert a b₂ ++ b₁ : append.comm
|
|||
|
... = insert a (b₂ ++ b₁) : append_insert_left
|
|||
|
... = insert a (b₁ ++ b₂) : append.comm
|
|||
|
|
|||
|
protected lemma induction_on [recursor 3] {C : bag A → Prop} (b : bag A) (h₁ : C empty) (h₂ : ∀ a b, C b → C (insert a b)) : C b :=
|
|||
|
quot.induction_on b (λ l, list.induction_on l h₁ (λ h t ih, h₂ h ⟦t⟧ ih))
|
|||
|
|
|||
|
section decidable_eq
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
open decidable
|
|||
|
|
|||
|
definition has_decidable_eq [instance] (b₁ b₂ : bag A) : decidable (b₁ = b₂) :=
|
|||
|
quot.rec_on_subsingleton₂ b₁ b₂ (λ l₁ l₂,
|
|||
|
match decidable_perm l₁ l₂ with
|
|||
|
| inl h := inl (quot.sound h)
|
|||
|
| inr h := inr (λ n, absurd (quot.exact n) h)
|
|||
|
end)
|
|||
|
end decidable_eq
|
|||
|
|
|||
|
section count
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
|
|||
|
definition count (a : A) (b : bag A) : nat :=
|
|||
|
quot.lift_on b (λ l, count a l)
|
|||
|
(λ l₁ l₂ h, count_eq_of_perm h a)
|
|||
|
|
|||
|
lemma count_empty (a : A) : count a empty = 0 :=
|
|||
|
rfl
|
|||
|
|
|||
|
lemma count_insert (a : A) (b : bag A) : count a (insert a b) = succ (count a b) :=
|
|||
|
quot.induction_on b (λ l, begin unfold [insert, count], rewrite count_cons_eq end)
|
|||
|
|
|||
|
lemma count_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : count a₁ (insert a₂ b) = count a₁ b :=
|
|||
|
quot.induction_on b (λ l, begin unfold [insert, count], rewrite (count_cons_of_ne h) end)
|
|||
|
|
|||
|
lemma count_singleton (a : A) : count a (singleton a) = 1 :=
|
|||
|
begin rewrite [-insert_empty_eq_singleton, count_insert] end
|
|||
|
|
|||
|
lemma count_append (a : A) (b₁ b₂ : bag A) : count a (append b₁ b₂) = count a b₁ + count a b₂ :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, begin unfold [append, count], rewrite list.count_append end)
|
|||
|
|
|||
|
open perm decidable
|
|||
|
protected lemma ext {b₁ b₂ : bag A} : (∀ a, count a b₁ = count a b₂) → b₁ = b₂ :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂ (h : ∀ a, count a ⟦l₁⟧ = count a ⟦l₂⟧),
|
|||
|
have gen : ∀ (l₁ l₂ : list A), (∀ a, list.count a l₁ = list.count a l₂) → l₁ ~ l₂
|
|||
|
| [] [] h₁ := !perm.refl
|
|||
|
| [] (a₂::s₂) h₁ := assert list.count a₂ [] = list.count a₂ (a₂::s₂), from h₁ a₂, by rewrite [count_nil at this, count_cons_eq at this]; contradiction
|
|||
|
| (a::s₁) s₂ h₁ :=
|
|||
|
assert g₁ : list.count a (a::s₁) > 0, from count_gt_zero_of_mem !mem_cons,
|
|||
|
assert list.count a (a::s₁) = list.count a s₂, from h₁ a,
|
|||
|
assert list.count a s₂ > 0, by rewrite [-this]; exact g₁,
|
|||
|
have a ∈ s₂, from mem_of_count_gt_zero this,
|
|||
|
have ∃ l r, s₂ = l++(a::r), from mem_split this,
|
|||
|
obtain l r (e₁ : s₂ = l++(a::r)), from this,
|
|||
|
have ∀ a, list.count a s₁ = list.count a (l++r), from
|
|||
|
take a₁,
|
|||
|
assert e₂ : list.count a₁ (a::s₁) = list.count a₁ (l++(a::r)), by rewrite -e₁; exact h₁ a₁,
|
|||
|
by_cases
|
|||
|
(suppose a₁ = a, begin
|
|||
|
rewrite [-this at e₂, list.count_append at e₂, *count_cons_eq at e₂, add_succ at e₂],
|
|||
|
injection e₂ with e₃, rewrite e₃,
|
|||
|
rewrite list.count_append
|
|||
|
end)
|
|||
|
(suppose a₁ ≠ a,
|
|||
|
by rewrite [list.count_append at e₂, *count_cons_of_ne this at e₂, e₂, list.count_append]),
|
|||
|
have ih : s₁ ~ l++r, from gen s₁ (l++r) this,
|
|||
|
calc a::s₁ ~ a::(l++r) : perm.skip a ih
|
|||
|
... ~ l++(a::r) : perm_middle
|
|||
|
... = s₂ : e₁,
|
|||
|
quot.sound (gen l₁ l₂ h))
|
|||
|
end count
|
|||
|
|
|||
|
section extract
|
|||
|
open decidable
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
|
|||
|
definition extract (a : A) (b : bag A) : bag A :=
|
|||
|
quot.lift_on b (λ l, ⟦filter (λ c, c ≠ a) l⟧)
|
|||
|
(λ l₁ l₂ h, quot.sound (perm_filter h))
|
|||
|
|
|||
|
lemma extract_singleton (a : A) : extract a (singleton a) = empty :=
|
|||
|
begin unfold [extract, singleton, of_list, filter], rewrite [if_neg (λ h : a ≠ a, absurd rfl h)] end
|
|||
|
|
|||
|
lemma extract_insert (a : A) (b : bag A) : extract a (insert a b) = extract a b :=
|
|||
|
quot.induction_on b (λ l, begin
|
|||
|
unfold [insert, extract],
|
|||
|
rewrite [@filter_cons_of_neg _ (λ c, c ≠ a) _ _ l (not_not_intro (eq.refl a))]
|
|||
|
end)
|
|||
|
|
|||
|
lemma extract_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : extract a₁ (insert a₂ b) = insert a₂ (extract a₁ b) :=
|
|||
|
quot.induction_on b (λ l, begin
|
|||
|
unfold [insert, extract],
|
|||
|
rewrite [@filter_cons_of_pos _ (λ c, c ≠ a₁) _ _ l (ne.symm h)]
|
|||
|
end)
|
|||
|
|
|||
|
lemma count_extract (a : A) (b : bag A) : count a (extract a b) = 0 :=
|
|||
|
bag.induction_on b rfl
|
|||
|
(λ c b ih, by_cases
|
|||
|
(suppose a = c, begin subst c, rewrite [extract_insert, ih] end)
|
|||
|
(suppose a ≠ c, begin rewrite [extract_insert_of_ne this, count_insert_of_ne this, ih] end))
|
|||
|
end extract
|
|||
|
|
|||
|
section erase
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
|
|||
|
definition erase (a : A) (b : bag A) : bag A :=
|
|||
|
quot.lift_on b (λ l, ⟦erase a l⟧)
|
|||
|
(λ l₁ l₂ h, quot.sound (erase_perm_erase_of_perm _ h))
|
|||
|
|
|||
|
lemma erase_empty (a : A) : erase a empty = empty :=
|
|||
|
rfl
|
|||
|
|
|||
|
lemma erase_insert (a : A) (b : bag A) : erase a (insert a b) = b :=
|
|||
|
quot.induction_on b (λ l, quot.sound (by rewrite erase_cons_head; apply perm.refl))
|
|||
|
|
|||
|
lemma erase_insert_of_ne {a₁ a₂ : A} (h : a₁ ≠ a₂) (b : bag A) : erase a₁ (insert a₂ b) = insert a₂ (erase a₁ b) :=
|
|||
|
quot.induction_on b (λ l, quot.sound (by rewrite (erase_cons_tail _ h); apply perm.refl))
|
|||
|
|
|||
|
end erase
|
|||
|
|
|||
|
section member
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
|
|||
|
definition mem (a : A) (b : bag A) := count a b > 0
|
|||
|
infix ∈ := mem
|
|||
|
|
|||
|
lemma mem_def (a : A) (b : bag A) : (a ∈ b) = (count a b > 0) :=
|
|||
|
rfl
|
|||
|
|
|||
|
lemma mem_insert (a : A) (b : bag A) : a ∈ insert a b :=
|
|||
|
begin unfold mem, rewrite count_insert, exact dec_trivial end
|
|||
|
|
|||
|
lemma mem_of_list_iff_mem (a : A) (l : list A) : a ∈ of_list l ↔ a ∈ l :=
|
|||
|
iff.intro !mem_of_count_gt_zero !count_gt_zero_of_mem
|
|||
|
|
|||
|
lemma count_of_list_eq_count (a : A) (l : list A) : count a (of_list l) = list.count a l :=
|
|||
|
rfl
|
|||
|
end member
|
|||
|
|
|||
|
section union_inter
|
|||
|
variable [decA : decidable_eq A]
|
|||
|
include decA
|
|||
|
open perm decidable
|
|||
|
|
|||
|
private definition union_list (l₁ l₂ : list A) :=
|
|||
|
erase_dup (l₁ ++ l₂)
|
|||
|
|
|||
|
private lemma perm_union_list {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : union_list l₁ l₂ ~ union_list l₃ l₄ :=
|
|||
|
perm_erase_dup_of_perm (perm_app h₁ h₂)
|
|||
|
|
|||
|
private lemma nodup_union_list (l₁ l₂ : list A) : nodup (union_list l₁ l₂) :=
|
|||
|
!nodup_erase_dup
|
|||
|
|
|||
|
private definition not_mem_of_not_mem_union_list_left {a : A} {l₁ l₂ : list A} (h : a ∉ union_list l₁ l₂) : a ∉ l₁ :=
|
|||
|
suppose a ∈ l₁,
|
|||
|
have a ∈ l₁ ++ l₂, from mem_append_left _ this,
|
|||
|
have a ∈ erase_dup (l₁ ++ l₂), from mem_erase_dup this,
|
|||
|
absurd this h
|
|||
|
|
|||
|
private definition not_mem_of_not_mem_union_list_right {a : A} {l₁ l₂ : list A} (h : a ∉ union_list l₁ l₂) : a ∉ l₂ :=
|
|||
|
suppose a ∈ l₂,
|
|||
|
have a ∈ l₁ ++ l₂, from mem_append_right _ this,
|
|||
|
have a ∈ erase_dup (l₁ ++ l₂), from mem_erase_dup this,
|
|||
|
absurd this h
|
|||
|
|
|||
|
private definition gen : nat → A → list A
|
|||
|
| 0 a := nil
|
|||
|
| (n+1) a := a :: gen n a
|
|||
|
|
|||
|
private lemma not_mem_gen_of_ne {a b : A} (h : a ≠ b) : ∀ n, a ∉ gen n b
|
|||
|
| 0 := !not_mem_nil
|
|||
|
| (n+1) := not_mem_cons_of_ne_of_not_mem h (not_mem_gen_of_ne n)
|
|||
|
|
|||
|
private lemma count_gen : ∀ (a : A) (n : nat), list.count a (gen n a) = n
|
|||
|
| a 0 := rfl
|
|||
|
| a (n+1) := begin unfold gen, rewrite [count_cons_eq, count_gen] end
|
|||
|
|
|||
|
private lemma count_gen_eq_zero_of_ne {a b : A} (h : a ≠ b) : ∀ n, list.count a (gen n b) = 0
|
|||
|
| 0 := rfl
|
|||
|
| (n+1) := begin unfold gen, rewrite [count_cons_of_ne h, count_gen_eq_zero_of_ne] end
|
|||
|
|
|||
|
private definition max_count (l₁ l₂ : list A) : list A → list A
|
|||
|
| [] := []
|
|||
|
| (a::l) := if list.count a l₁ ≥ list.count a l₂ then gen (list.count a l₁) a ++ max_count l else gen (list.count a l₂) a ++ max_count l
|
|||
|
|
|||
|
private definition min_count (l₁ l₂ : list A) : list A → list A
|
|||
|
| [] := []
|
|||
|
| (a::l) := if list.count a l₁ ≤ list.count a l₂ then gen (list.count a l₁) a ++ min_count l else gen (list.count a l₂) a ++ min_count l
|
|||
|
|
|||
|
private lemma not_mem_max_count_of_not_mem (l₁ l₂ : list A) : ∀ {a l}, a ∉ l → a ∉ max_count l₁ l₂ l
|
|||
|
| a [] h := !not_mem_nil
|
|||
|
| a (b::l) h :=
|
|||
|
assert ih : a ∉ max_count l₁ l₂ l, from not_mem_max_count_of_not_mem (not_mem_of_not_mem_cons h),
|
|||
|
assert a ≠ b, from ne_of_not_mem_cons h,
|
|||
|
by_cases
|
|||
|
(suppose list.count b l₁ ≥ list.count b l₂, begin
|
|||
|
unfold max_count, rewrite [if_pos this],
|
|||
|
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
|
|||
|
end)
|
|||
|
(suppose ¬ list.count b l₁ ≥ list.count b l₂, begin
|
|||
|
unfold max_count, rewrite [if_neg this],
|
|||
|
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
|
|||
|
end)
|
|||
|
|
|||
|
private lemma max_count_eq (l₁ l₂ : list A) : ∀ {a : A} {l : list A}, a ∈ l → nodup l → list.count a (max_count l₁ l₂ l) = max (list.count a l₁) (list.count a l₂)
|
|||
|
| a [] h₁ h₂ := absurd h₁ !not_mem_nil
|
|||
|
| a (b::l) h₁ h₂ :=
|
|||
|
assert nodup l, from nodup_of_nodup_cons h₂,
|
|||
|
assert b ∉ l, from not_mem_of_nodup_cons h₂,
|
|||
|
or.elim h₁
|
|||
|
(suppose a = b,
|
|||
|
have a ∉ l, by rewrite this; assumption,
|
|||
|
assert a ∉ max_count l₁ l₂ l, from not_mem_max_count_of_not_mem l₁ l₂ this,
|
|||
|
by_cases
|
|||
|
(suppose i : list.count a l₁ ≥ list.count a l₂, begin
|
|||
|
unfold max_count, subst b,
|
|||
|
rewrite [if_pos i, list.count_append, count_gen, max_eq_left i, count_eq_zero_of_not_mem `a ∉ max_count l₁ l₂ l`]
|
|||
|
end)
|
|||
|
(suppose i : ¬ list.count a l₁ ≥ list.count a l₂, begin
|
|||
|
unfold max_count, subst b,
|
|||
|
rewrite [if_neg i, list.count_append, count_gen, max_eq_right' (lt_of_not_ge i), count_eq_zero_of_not_mem `a ∉ max_count l₁ l₂ l`]
|
|||
|
end))
|
|||
|
(suppose a ∈ l,
|
|||
|
assert a ≠ b, from suppose a = b, by subst b; contradiction,
|
|||
|
assert ih : list.count a (max_count l₁ l₂ l) = max (list.count a l₁) (list.count a l₂), from max_count_eq `a ∈ l` `nodup l`,
|
|||
|
by_cases
|
|||
|
(suppose i : list.count b l₁ ≥ list.count b l₂, begin
|
|||
|
unfold max_count,
|
|||
|
rewrite [if_pos i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
|
|||
|
end)
|
|||
|
(suppose i : ¬ list.count b l₁ ≥ list.count b l₂, begin
|
|||
|
unfold max_count,
|
|||
|
rewrite [if_neg i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
|
|||
|
end))
|
|||
|
|
|||
|
private lemma not_mem_min_count_of_not_mem (l₁ l₂ : list A) : ∀ {a l}, a ∉ l → a ∉ min_count l₁ l₂ l
|
|||
|
| a [] h := !not_mem_nil
|
|||
|
| a (b::l) h :=
|
|||
|
assert ih : a ∉ min_count l₁ l₂ l, from not_mem_min_count_of_not_mem (not_mem_of_not_mem_cons h),
|
|||
|
assert a ≠ b, from ne_of_not_mem_cons h,
|
|||
|
by_cases
|
|||
|
(suppose list.count b l₁ ≤ list.count b l₂, begin
|
|||
|
unfold min_count, rewrite [if_pos this],
|
|||
|
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
|
|||
|
end)
|
|||
|
(suppose ¬ list.count b l₁ ≤ list.count b l₂, begin
|
|||
|
unfold min_count, rewrite [if_neg this],
|
|||
|
exact not_mem_append (not_mem_gen_of_ne `a ≠ b` _) ih
|
|||
|
end)
|
|||
|
|
|||
|
private lemma min_count_eq (l₁ l₂ : list A) : ∀ {a : A} {l : list A}, a ∈ l → nodup l → list.count a (min_count l₁ l₂ l) = min (list.count a l₁) (list.count a l₂)
|
|||
|
| a [] h₁ h₂ := absurd h₁ !not_mem_nil
|
|||
|
| a (b::l) h₁ h₂ :=
|
|||
|
assert nodup l, from nodup_of_nodup_cons h₂,
|
|||
|
assert b ∉ l, from not_mem_of_nodup_cons h₂,
|
|||
|
or.elim h₁
|
|||
|
(suppose a = b,
|
|||
|
have a ∉ l, by rewrite this; assumption,
|
|||
|
assert a ∉ min_count l₁ l₂ l, from not_mem_min_count_of_not_mem l₁ l₂ this,
|
|||
|
by_cases
|
|||
|
(suppose i : list.count a l₁ ≤ list.count a l₂, begin
|
|||
|
unfold min_count, subst b,
|
|||
|
rewrite [if_pos i, list.count_append, count_gen, min_eq_left i, count_eq_zero_of_not_mem `a ∉ min_count l₁ l₂ l`]
|
|||
|
end)
|
|||
|
(suppose i : ¬ list.count a l₁ ≤ list.count a l₂, begin
|
|||
|
unfold min_count, subst b,
|
|||
|
rewrite [if_neg i, list.count_append, count_gen, min_eq_right (le_of_lt (lt_of_not_ge i)), count_eq_zero_of_not_mem `a ∉ min_count l₁ l₂ l`]
|
|||
|
end))
|
|||
|
(suppose a ∈ l,
|
|||
|
assert a ≠ b, from suppose a = b, by subst b; contradiction,
|
|||
|
assert ih : list.count a (min_count l₁ l₂ l) = min (list.count a l₁) (list.count a l₂), from min_count_eq `a ∈ l` `nodup l`,
|
|||
|
by_cases
|
|||
|
(suppose i : list.count b l₁ ≤ list.count b l₂, begin
|
|||
|
unfold min_count,
|
|||
|
rewrite [if_pos i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
|
|||
|
end)
|
|||
|
(suppose i : ¬ list.count b l₁ ≤ list.count b l₂, begin
|
|||
|
unfold min_count,
|
|||
|
rewrite [if_neg i, -ih, list.count_append, count_gen_eq_zero_of_ne `a ≠ b`, zero_add]
|
|||
|
end))
|
|||
|
|
|||
|
private lemma perm_max_count_left {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : ∀ l, max_count l₁ l₂ l ~ max_count l₃ l₄ l
|
|||
|
| [] := by esimp
|
|||
|
| (a::l) :=
|
|||
|
assert e₁ : list.count a l₁ = list.count a l₃, from count_eq_of_perm h₁ a,
|
|||
|
assert e₂ : list.count a l₂ = list.count a l₄, from count_eq_of_perm h₂ a,
|
|||
|
by_cases
|
|||
|
(suppose list.count a l₁ ≥ list.count a l₂,
|
|||
|
begin unfold max_count, rewrite [-e₁, -e₂, *if_pos this], exact perm_app !perm.refl !perm_max_count_left end)
|
|||
|
(suppose ¬ list.count a l₁ ≥ list.count a l₂,
|
|||
|
begin unfold max_count, rewrite [-e₁, -e₂, *if_neg this], exact perm_app !perm.refl !perm_max_count_left end)
|
|||
|
|
|||
|
private lemma perm_app_left_comm (l₁ l₂ l₃ : list A) : l₁ ++ (l₂ ++ l₃) ~ l₂ ++ (l₁ ++ l₃) :=
|
|||
|
calc l₁ ++ (l₂ ++ l₃) = (l₁ ++ l₂) ++ l₃ : list.append.assoc
|
|||
|
... ~ (l₂ ++ l₁) ++ l₃ : perm_app !perm_app_comm !perm.refl
|
|||
|
... = l₂ ++ (l₁ ++ l₃) : list.append.assoc
|
|||
|
|
|||
|
private lemma perm_max_count_right {l r : list A} (h : l ~ r) : ∀ l₁ l₂, max_count l₁ l₂ l ~ max_count l₁ l₂ r :=
|
|||
|
perm.induction_on h
|
|||
|
(λ l₁ l₂, !perm.refl)
|
|||
|
(λ x s₁ s₂ p ih l₁ l₂, by_cases
|
|||
|
(suppose i : list.count x l₁ ≥ list.count x l₂,
|
|||
|
begin unfold max_count, rewrite [*if_pos i], exact perm_app !perm.refl !ih end)
|
|||
|
(suppose i : ¬ list.count x l₁ ≥ list.count x l₂,
|
|||
|
begin unfold max_count, rewrite [*if_neg i], exact perm_app !perm.refl !ih end))
|
|||
|
(λ x y l l₁ l₂, by_cases
|
|||
|
(suppose i₁ : list.count x l₁ ≥ list.count x l₂, by_cases
|
|||
|
(suppose i₂ : list.count y l₁ ≥ list.count y l₂,
|
|||
|
begin unfold max_count, unfold max_count, rewrite [*if_pos i₁, *if_pos i₂], apply perm_app_left_comm end)
|
|||
|
(suppose i₂ : ¬ list.count y l₁ ≥ list.count y l₂,
|
|||
|
begin unfold max_count, unfold max_count, rewrite [*if_pos i₁, *if_neg i₂], apply perm_app_left_comm end))
|
|||
|
(suppose i₁ : ¬ list.count x l₁ ≥ list.count x l₂, by_cases
|
|||
|
(suppose i₂ : list.count y l₁ ≥ list.count y l₂,
|
|||
|
begin unfold max_count, unfold max_count, rewrite [*if_neg i₁, *if_pos i₂], apply perm_app_left_comm end)
|
|||
|
(suppose i₂ : ¬ list.count y l₁ ≥ list.count y l₂,
|
|||
|
begin unfold max_count, unfold max_count, rewrite [*if_neg i₁, *if_neg i₂], apply perm_app_left_comm end)))
|
|||
|
(λ s₁ s₂ s₃ p₁ p₂ ih₁ ih₂ l₁ l₂, perm.trans (ih₁ l₁ l₂) (ih₂ l₁ l₂))
|
|||
|
|
|||
|
private lemma perm_max_count {l₁ l₂ l₃ r₁ r₂ r₃ : list A} (p₁ : l₁ ~ r₁) (p₂ : l₂ ~ r₂) (p₃ : l₃ ~ r₃) : max_count l₁ l₂ l₃ ~ max_count r₁ r₂ r₃ :=
|
|||
|
calc max_count l₁ l₂ l₃ ~ max_count r₁ r₂ l₃ : perm_max_count_left p₁ p₂
|
|||
|
... ~ max_count r₁ r₂ r₃ : perm_max_count_right p₃
|
|||
|
|
|||
|
private lemma perm_min_count_left {l₁ l₂ l₃ l₄ : list A} (h₁ : l₁ ~ l₃) (h₂ : l₂ ~ l₄) : ∀ l, min_count l₁ l₂ l ~ min_count l₃ l₄ l
|
|||
|
| [] := by esimp
|
|||
|
| (a::l) :=
|
|||
|
assert e₁ : list.count a l₁ = list.count a l₃, from count_eq_of_perm h₁ a,
|
|||
|
assert e₂ : list.count a l₂ = list.count a l₄, from count_eq_of_perm h₂ a,
|
|||
|
by_cases
|
|||
|
(suppose list.count a l₁ ≤ list.count a l₂,
|
|||
|
begin unfold min_count, rewrite [-e₁, -e₂, *if_pos this], exact perm_app !perm.refl !perm_min_count_left end)
|
|||
|
(suppose ¬ list.count a l₁ ≤ list.count a l₂,
|
|||
|
begin unfold min_count, rewrite [-e₁, -e₂, *if_neg this], exact perm_app !perm.refl !perm_min_count_left end)
|
|||
|
|
|||
|
private lemma perm_min_count_right {l r : list A} (h : l ~ r) : ∀ l₁ l₂, min_count l₁ l₂ l ~ min_count l₁ l₂ r :=
|
|||
|
perm.induction_on h
|
|||
|
(λ l₁ l₂, !perm.refl)
|
|||
|
(λ x s₁ s₂ p ih l₁ l₂, by_cases
|
|||
|
(suppose i : list.count x l₁ ≤ list.count x l₂,
|
|||
|
begin unfold min_count, rewrite [*if_pos i], exact perm_app !perm.refl !ih end)
|
|||
|
(suppose i : ¬ list.count x l₁ ≤ list.count x l₂,
|
|||
|
begin unfold min_count, rewrite [*if_neg i], exact perm_app !perm.refl !ih end))
|
|||
|
(λ x y l l₁ l₂, by_cases
|
|||
|
(suppose i₁ : list.count x l₁ ≤ list.count x l₂, by_cases
|
|||
|
(suppose i₂ : list.count y l₁ ≤ list.count y l₂,
|
|||
|
begin unfold min_count, unfold min_count, rewrite [*if_pos i₁, *if_pos i₂], apply perm_app_left_comm end)
|
|||
|
(suppose i₂ : ¬ list.count y l₁ ≤ list.count y l₂,
|
|||
|
begin unfold min_count, unfold min_count, rewrite [*if_pos i₁, *if_neg i₂], apply perm_app_left_comm end))
|
|||
|
(suppose i₁ : ¬ list.count x l₁ ≤ list.count x l₂, by_cases
|
|||
|
(suppose i₂ : list.count y l₁ ≤ list.count y l₂,
|
|||
|
begin unfold min_count, unfold min_count, rewrite [*if_neg i₁, *if_pos i₂], apply perm_app_left_comm end)
|
|||
|
(suppose i₂ : ¬ list.count y l₁ ≤ list.count y l₂,
|
|||
|
begin unfold min_count, unfold min_count, rewrite [*if_neg i₁, *if_neg i₂], apply perm_app_left_comm end)))
|
|||
|
(λ s₁ s₂ s₃ p₁ p₂ ih₁ ih₂ l₁ l₂, perm.trans (ih₁ l₁ l₂) (ih₂ l₁ l₂))
|
|||
|
|
|||
|
private lemma perm_min_count {l₁ l₂ l₃ r₁ r₂ r₃ : list A} (p₁ : l₁ ~ r₁) (p₂ : l₂ ~ r₂) (p₃ : l₃ ~ r₃) : min_count l₁ l₂ l₃ ~ min_count r₁ r₂ r₃ :=
|
|||
|
calc min_count l₁ l₂ l₃ ~ min_count r₁ r₂ l₃ : perm_min_count_left p₁ p₂
|
|||
|
... ~ min_count r₁ r₂ r₃ : perm_min_count_right p₃
|
|||
|
|
|||
|
definition union (b₁ b₂ : bag A) : bag A :=
|
|||
|
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦max_count l₁ l₂ (union_list l₁ l₂)⟧)
|
|||
|
(λ l₁ l₂ l₃ l₄ p₁ p₂, quot.sound (perm_max_count p₁ p₂ (perm_union_list p₁ p₂)))
|
|||
|
infix ∪ := union
|
|||
|
|
|||
|
definition inter (b₁ b₂ : bag A) : bag A :=
|
|||
|
quot.lift_on₂ b₁ b₂ (λ l₁ l₂, ⟦min_count l₁ l₂ (union_list l₁ l₂)⟧)
|
|||
|
(λ l₁ l₂ l₃ l₄ p₁ p₂, quot.sound (perm_min_count p₁ p₂ (perm_union_list p₁ p₂)))
|
|||
|
infix ∩ := inter
|
|||
|
|
|||
|
lemma count_union (a : A) (b₁ b₂ : bag A) : count a (union b₁ b₂) = max (count a b₁) (count a b₂) :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, by_cases
|
|||
|
(suppose a ∈ union_list l₁ l₂, !max_count_eq this !nodup_union_list)
|
|||
|
(suppose ¬ a ∈ union_list l₁ l₂,
|
|||
|
assert ¬ a ∈ l₁, from not_mem_of_not_mem_union_list_left `¬ a ∈ union_list l₁ l₂`,
|
|||
|
assert ¬ a ∈ l₂, from not_mem_of_not_mem_union_list_right `¬ a ∈ union_list l₁ l₂`,
|
|||
|
assert n : ¬ a ∈ max_count l₁ l₂ (union_list l₁ l₂), from not_mem_max_count_of_not_mem l₁ l₂ `¬ a ∈ union_list l₁ l₂`,
|
|||
|
begin
|
|||
|
unfold [union, count],
|
|||
|
rewrite [count_eq_zero_of_not_mem `¬ a ∈ l₁`, count_eq_zero_of_not_mem `¬ a ∈ l₂`, max_self],
|
|||
|
rewrite [count_eq_zero_of_not_mem n]
|
|||
|
end))
|
|||
|
|
|||
|
lemma count_inter (a : A) (b₁ b₂ : bag A) : count a (inter b₁ b₂) = min (count a b₁) (count a b₂) :=
|
|||
|
quot.induction_on₂ b₁ b₂ (λ l₁ l₂, by_cases
|
|||
|
(suppose a ∈ union_list l₁ l₂, !min_count_eq this !nodup_union_list)
|
|||
|
(suppose ¬ a ∈ union_list l₁ l₂,
|
|||
|
assert ¬ a ∈ l₁, from not_mem_of_not_mem_union_list_left `¬ a ∈ union_list l₁ l₂`,
|
|||
|
assert ¬ a ∈ l₂, from not_mem_of_not_mem_union_list_right `¬ a ∈ union_list l₁ l₂`,
|
|||
|
assert n : ¬ a ∈ min_count l₁ l₂ (union_list l₁ l₂), from not_mem_min_count_of_not_mem l₁ l₂ `¬ a ∈ union_list l₁ l₂`,
|
|||
|
begin
|
|||
|
unfold [inter, count],
|
|||
|
rewrite [count_eq_zero_of_not_mem `¬ a ∈ l₁`, count_eq_zero_of_not_mem `¬ a ∈ l₂`, min_self],
|
|||
|
rewrite [count_eq_zero_of_not_mem n]
|
|||
|
end))
|
|||
|
end union_inter
|
|||
|
end bag
|