2014-12-24 01:35:14 +00:00
|
|
|
import logic
|
2014-10-29 20:37:30 +00:00
|
|
|
|
|
|
|
inductive vector (T : Type) : nat → Type :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| nil {} : vector T nat.zero
|
|
|
|
| cons : T → ∀{n}, vector T n → vector T (nat.succ n)
|
2014-10-29 20:37:30 +00:00
|
|
|
|
|
|
|
#projections or
|
|
|
|
#projections and
|
|
|
|
#projections eq.refl
|
|
|
|
#projections eq
|
|
|
|
#projections vector
|
|
|
|
|
|
|
|
inductive point :=
|
|
|
|
mk : nat → nat → point
|
|
|
|
|
|
|
|
#projections point :: x y z
|
|
|
|
|
|
|
|
#projections point :: x y
|
|
|
|
|
|
|
|
#projections point :: x y
|
|
|
|
|
|
|
|
inductive funny : nat → Type :=
|
|
|
|
mk : Π (a : nat), funny a
|
|
|
|
|
|
|
|
#projections funny
|