19 lines
354 B
Text
19 lines
354 B
Text
|
open nat
|
||
|
|
||
|
reserve postfix ⁻¹:(max + 1)
|
||
|
|
||
|
postfix ⁻¹ := eq.symm
|
||
|
|
||
|
constant foo (a b : nat) : a + b = 0
|
||
|
|
||
|
theorem tst1 (a b : nat) : 0 = a + b :=
|
||
|
!foo⁻¹
|
||
|
|
||
|
constant f {a b : nat} (h1 : 0 = a + b) (h2 : a = b) : a = 0 ∧ b = 0
|
||
|
|
||
|
example (a b : nat) : a = 0 ∧ b = 0 :=
|
||
|
f !foo⁻¹ sorry
|
||
|
|
||
|
example (a b : nat) : a = 0 ∧ b = 0 :=
|
||
|
f !foo⁻¹ sorry⁻¹
|