2014-12-01 05:16:01 +00:00
|
|
|
import data.sigma
|
2014-10-27 14:26:01 +00:00
|
|
|
|
|
|
|
namespace sigma
|
2014-11-15 23:59:49 +00:00
|
|
|
namespace manual
|
2014-10-27 14:26:01 +00:00
|
|
|
definition no_confusion_type {A : Type} {B : A → Type} (P : Type) (v₁ v₂ : sigma B) : Type :=
|
2014-11-04 07:06:33 +00:00
|
|
|
rec_on v₁
|
|
|
|
(λ (a₁ : A) (b₁ : B a₁), rec_on v₂
|
2014-10-27 14:26:01 +00:00
|
|
|
(λ (a₂ : A) (b₂ : B a₂),
|
|
|
|
(Π (eq₁ : a₁ = a₂), eq.rec_on eq₁ b₁ = b₂ → P) → P))
|
|
|
|
|
|
|
|
definition no_confusion {A : Type} {B : A → Type} {P : Type} {v₁ v₂ : sigma B} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
|
|
|
|
assume H₁₂ : v₁ = v₂,
|
|
|
|
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
|
2014-11-04 07:06:33 +00:00
|
|
|
assume H₁₁, rec_on v₁
|
2014-10-27 14:26:01 +00:00
|
|
|
(λ (a₁ : A) (b₁ : B a₁) (h : Π (eq₁ : a₁ = a₁), eq.rec_on eq₁ b₁ = b₁ → P),
|
|
|
|
h rfl rfl),
|
|
|
|
eq.rec_on H₁₂ aux H₁₂
|
2014-11-15 23:59:49 +00:00
|
|
|
end manual
|
2014-10-27 14:26:01 +00:00
|
|
|
|
2014-12-20 02:23:08 +00:00
|
|
|
theorem sigma.mk.inj_1 {A : Type} {B : A → Type} {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (Heq : mk a₁ b₁ = mk a₂ b₂) : a₁ = a₂ :=
|
2014-10-27 14:26:01 +00:00
|
|
|
begin
|
|
|
|
apply (no_confusion Heq), intros, assumption
|
|
|
|
end
|
|
|
|
|
2014-12-20 02:23:08 +00:00
|
|
|
theorem sigma.mk.inj_2 {A : Type} {B : A → Type} (a₁ a₂ : A) (b₁ : B a₁) (b₂ : B a₂) (Heq : mk a₁ b₁ = mk a₂ b₂) : b₁ == b₂ :=
|
2014-10-27 14:26:01 +00:00
|
|
|
begin
|
|
|
|
apply (no_confusion Heq), intros, eassumption
|
|
|
|
end
|
|
|
|
end sigma
|