lean2/src/library/definitional/projection.cpp

154 lines
6.6 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/sstream.h"
#include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "kernel/type_checker.h"
#include "kernel/inductive/inductive.h"
#include "library/reducible.h"
#include "library/module.h"
namespace lean {
[[ noreturn ]] static void throw_ill_formed(name const & n) {
throw exception(sstream() << "projection generation, '" << n << "' is an ill-formed inductive datatype");
}
static pair<unsigned, inductive::intro_rule> get_nparam_intro_rule(environment const & env, name const & n) {
optional<inductive::inductive_decls> decls = inductive::is_inductive_decl(env, n);
if (!decls)
throw exception(sstream() << "projection generation, '" << n << "' is not an inductive datatype");
optional<unsigned> num_indices = inductive::get_num_indices(env, n);
if (num_indices && *num_indices > 0)
throw exception(sstream() << "projection generation, '"
<< n << "' is an indexed inductive datatype family");
unsigned num_params = std::get<1>(*decls);
for (auto const & decl : std::get<2>(*decls)) {
if (inductive::inductive_decl_name(decl) == n) {
auto intros = inductive::inductive_decl_intros(decl);
if (length(intros) != 1)
throw exception(sstream() << "projection generation, '"
<< n << "' does not have a single constructor");
return mk_pair(num_params, head(intros));
}
}
throw_ill_formed(n);
}
static bool is_prop(expr type) {
while (is_pi(type)) {
type = binding_body(type);
}
return is_sort(type) && is_zero(sort_level(type));
}
environment mk_projections(environment const & env, name const & n, buffer<name> const & proj_names, bool inst_implicit) {
// Given an inductive datatype C A (where A represent parameters)
// intro : Pi A (x_1 : B_1[A]) (x_2 : B_2[A, x_1]) ..., C A
//
// we generate projections of the form
// proj_i A (c : C A) : B_i[A, (proj_1 A n), ..., (proj_{i-1} A n)]
// C.rec A (fun (x : C A), B_i[A, ...]) (fun (x_1 ... x_n), x_i) c
auto p = get_nparam_intro_rule(env, n);
name_generator ngen;
unsigned nparams = p.first;
inductive::intro_rule intro = p.second;
expr intro_type = inductive::intro_rule_type(intro);
name rec_name = inductive::get_elim_name(n);
declaration ind_decl = env.get(n);
if (env.impredicative() && is_prop(ind_decl.get_type()))
throw exception(sstream() << "projection generation, '" << n << "' is a proposition");
declaration rec_decl = env.get(rec_name);
level_param_names lvl_params = ind_decl.get_univ_params();
levels lvls = param_names_to_levels(lvl_params);
buffer<expr> params; // datatype parameters
for (unsigned i = 0; i < nparams; i++) {
if (!is_pi(intro_type))
throw_ill_formed(n);
expr param = mk_local(ngen.next(), binding_name(intro_type), binding_domain(intro_type), binder_info());
intro_type = instantiate(binding_body(intro_type), param);
params.push_back(param);
}
expr C_A = mk_app(mk_constant(n, lvls), params);
binder_info c_bi = inst_implicit ? mk_inst_implicit_binder_info() : binder_info();
expr c = mk_local(ngen.next(), name("c"), C_A, c_bi);
buffer<expr> intro_type_args; // arguments that are not parameters
expr it = intro_type;
while (is_pi(it)) {
expr local = mk_local(ngen.next(), binding_name(it), binding_domain(it), binding_info(it));
intro_type_args.push_back(local);
it = instantiate(binding_body(it), local);
}
buffer<expr> projs; // projections generated so far
unsigned i = 0;
environment new_env = env;
for (name const & proj_name : proj_names) {
if (!is_pi(intro_type))
throw exception(sstream() << "generating projection '" << proj_name << "', '"
<< n << "' does not have sufficient data");
expr result_type = binding_domain(intro_type);
buffer<expr> proj_args;
proj_args.append(params);
proj_args.push_back(c);
expr type_former = Fun(c, result_type);
expr minor_premise = Fun(intro_type_args, mk_var(intro_type_args.size() - i - 1));
expr major_premise = c;
type_checker tc(new_env);
level l = sort_level(tc.ensure_sort(tc.infer(result_type).first).first);
levels rec_lvls = append(to_list(l), lvls);
expr rec = mk_constant(rec_name, rec_lvls);
buffer<expr> rec_args;
rec_args.append(params);
rec_args.push_back(type_former);
rec_args.push_back(minor_premise);
rec_args.push_back(major_premise);
expr rec_app = mk_app(rec, rec_args);
expr proj_type = Pi(proj_args, result_type);
bool strict = false;
proj_type = infer_implicit(proj_type, nparams, strict);
expr proj_val = Fun(proj_args, rec_app);
bool opaque = false;
bool use_conv_opt = false;
declaration new_d = mk_definition(env, proj_name, lvl_params, proj_type, proj_val,
opaque, rec_decl.get_module_idx(), use_conv_opt);
new_env = module::add(new_env, check(new_env, new_d));
new_env = set_reducible(new_env, proj_name, reducible_status::On);
expr proj = mk_app(mk_app(mk_constant(proj_name, lvls), params), c);
intro_type = instantiate(binding_body(intro_type), proj);
i++;
}
return new_env;
}
static name mk_fresh_name(environment const & env, buffer<name> const & names, name const & s) {
unsigned i = 1;
name c = s;
while (true) {
if (!env.find(c) &&
std::find(names.begin(), names.end(), c) == names.end())
return c;
c = s.append_after(i);
i++;
}
}
environment mk_projections(environment const & env, name const & n, bool inst_implicit) {
auto p = get_nparam_intro_rule(env, n);
unsigned num_params = p.first;
inductive::intro_rule ir = p.second;
expr type = inductive::intro_rule_type(ir);
buffer<name> proj_names;
unsigned i = 0;
while (is_pi(type)) {
if (i >= num_params)
proj_names.push_back(mk_fresh_name(env, proj_names, n + binding_name(type)));
i++;
type = binding_body(type);
}
return mk_projections(env, n, proj_names, inst_implicit);
}
}