lean2/library/algebra/category/yoneda.lean

31 lines
916 B
Text
Raw Normal View History

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
import .basic .constructions
open eq eq.ops category functor category.ops prod
namespace yoneda
--representable functor
section
variables {ob : Type} {C : category ob}
set_option pp.universes true
check @type_category
section
variables {a a' b b' : ob} (f : @hom ob C a' a) (g : @hom ob C b b')
-- definition Hom_fun_fun :
end
definition Hom : Cᵒᵖ ×c C ⇒ type :=
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
(λ a, funext (λh, !id_left ⬝ !id_right))
(λ a b c g f, funext (λh,
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
--I'm lazy, waiting for automation to fill this
end
end yoneda