feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Haitao Zhang. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
|
|
Author : Haitao Zhang
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
import data algebra.group algebra.group_power .finsubg .hom .perm
|
|
|
|
|
|
|
|
|
|
open function algebra finset
|
|
|
|
|
open eq.ops
|
|
|
|
|
|
|
|
|
|
namespace group
|
|
|
|
|
|
|
|
|
|
section cyclic
|
2015-07-31 03:14:48 +00:00
|
|
|
|
open nat fin list
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
local attribute madd [reducible]
|
|
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
variable [ambG : group A]
|
|
|
|
|
include ambG
|
|
|
|
|
|
|
|
|
|
lemma pow_mod {a : A} {n m : nat} : a ^ m = 1 → a ^ n = a ^ (n mod m) :=
|
|
|
|
|
assume Pid,
|
2015-07-31 03:14:48 +00:00
|
|
|
|
assert a ^ (n div m * m) = 1, from calc
|
|
|
|
|
a ^ (n div m * m) = a ^ (m * (n div m)) : by rewrite (mul.comm (n div m) m)
|
|
|
|
|
... = (a ^ m) ^ (n div m) : by rewrite pow_mul
|
|
|
|
|
... = 1 ^ (n div m) : by rewrite Pid
|
|
|
|
|
... = 1 : one_pow (n div m),
|
|
|
|
|
calc a ^ n = a ^ (n div m * m + n mod m) : by rewrite -(eq_div_mul_add_mod n m)
|
|
|
|
|
... = a ^ (n div m * m) * a ^ (n mod m) : by rewrite pow_add
|
|
|
|
|
... = 1 * a ^ (n mod m) : by rewrite this
|
|
|
|
|
... = a ^ (n mod m) : by rewrite one_mul
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma pow_sub_eq_one_of_pow_eq {a : A} {i j : nat} :
|
|
|
|
|
a^i = a^j → a^(i - j) = 1 :=
|
|
|
|
|
assume Pe, or.elim (lt_or_ge i j)
|
|
|
|
|
(assume Piltj, begin rewrite [sub_eq_zero_of_le (nat.le_of_lt Piltj)] end)
|
|
|
|
|
(assume Pigej, begin rewrite [pow_sub a Pigej, Pe, mul.right_inv] end)
|
|
|
|
|
|
2015-08-04 00:49:20 +00:00
|
|
|
|
lemma pow_dist_eq_one_of_pow_eq {a : A} {i j : nat} :
|
|
|
|
|
a^i = a^j → a^(dist i j) = 1 :=
|
|
|
|
|
assume Pe, or.elim (lt_or_ge i j)
|
|
|
|
|
(suppose i < j, by rewrite [dist_eq_sub_of_lt this]; exact pow_sub_eq_one_of_pow_eq (eq.symm Pe))
|
|
|
|
|
(suppose i ≥ j, by rewrite [dist_eq_sub_of_ge this]; exact pow_sub_eq_one_of_pow_eq Pe)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma pow_madd {a : A} {n : nat} {i j : fin (succ n)} :
|
|
|
|
|
a^(succ n) = 1 → a^(val (i + j)) = a^i * a^j :=
|
|
|
|
|
assume Pe, calc
|
|
|
|
|
a^(val (i + j)) = a^((i + j) mod (succ n)) : rfl
|
2015-10-10 17:38:09 +00:00
|
|
|
|
... = a^(val i + val j) : by rewrite [-pow_mod Pe]
|
2015-07-31 03:14:48 +00:00
|
|
|
|
... = a^i * a^j : by rewrite pow_add
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma mk_pow_mod {a : A} {n m : nat} : a ^ (succ m) = 1 → a ^ n = a ^ (mk_mod m n) :=
|
|
|
|
|
assume Pe, pow_mod Pe
|
|
|
|
|
|
|
|
|
|
variable [finA : fintype A]
|
|
|
|
|
include finA
|
|
|
|
|
|
|
|
|
|
open fintype
|
|
|
|
|
|
|
|
|
|
variable [deceqA : decidable_eq A]
|
|
|
|
|
include deceqA
|
|
|
|
|
|
|
|
|
|
lemma exists_pow_eq_one (a : A) : ∃ n, n < card A ∧ a ^ (succ n) = 1 :=
|
|
|
|
|
let f := (λ i : fin (succ (card A)), a ^ i) in
|
|
|
|
|
assert Pninj : ¬(injective f), from assume Pinj,
|
|
|
|
|
absurd (card_le_of_inj _ _ (exists.intro f Pinj))
|
|
|
|
|
(begin rewrite [card_fin], apply not_succ_le_self end),
|
|
|
|
|
obtain i₁ P₁, from exists_not_of_not_forall Pninj,
|
|
|
|
|
obtain i₂ P₂, from exists_not_of_not_forall P₁,
|
|
|
|
|
obtain Pfe Pne, from iff.elim_left not_implies_iff_and_not P₂,
|
|
|
|
|
assert Pvne : val i₁ ≠ val i₂, from assume Pveq, absurd (eq_of_veq Pveq) Pne,
|
2015-08-04 00:49:20 +00:00
|
|
|
|
exists.intro (pred (dist i₁ i₂)) (begin
|
|
|
|
|
rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)], apply and.intro,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
apply lt_of_succ_lt_succ,
|
2015-08-04 00:49:20 +00:00
|
|
|
|
rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)],
|
|
|
|
|
apply nat.lt_of_le_of_lt dist_le_max (max_lt i₁ i₂),
|
|
|
|
|
apply pow_dist_eq_one_of_pow_eq Pfe
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
end)
|
|
|
|
|
|
|
|
|
|
-- Another possibility is to generate a list of powers and use find to get the first
|
|
|
|
|
-- unity.
|
|
|
|
|
-- The bound on bex is arbitrary as long as it is large enough (at least card A). Making
|
|
|
|
|
-- it larger simplifies some proofs, such as a ∈ cyc a.
|
|
|
|
|
definition cyc (a : A) : finset A := {x ∈ univ | bex (succ (card A)) (λ n, a ^ n = x)}
|
|
|
|
|
|
|
|
|
|
definition order (a : A) := card (cyc a)
|
|
|
|
|
|
2015-10-10 17:38:09 +00:00
|
|
|
|
definition pow_fin (a : A) (n : nat) (i : fin (order a)) := a ^ (i + n)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
definition cyc_pow_fin (a : A) (n : nat) : finset A := image (pow_fin a n) univ
|
|
|
|
|
|
|
|
|
|
lemma order_le_group_order {a : A} : order a ≤ card A :=
|
|
|
|
|
card_le_card_of_subset !subset_univ
|
|
|
|
|
|
|
|
|
|
lemma cyc_has_one (a : A) : 1 ∈ cyc a :=
|
|
|
|
|
begin
|
2015-08-08 22:10:44 +00:00
|
|
|
|
apply mem_sep_of_mem !mem_univ,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
existsi 0, apply and.intro,
|
|
|
|
|
apply zero_lt_succ,
|
|
|
|
|
apply pow_zero
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma order_pos (a : A) : 0 < order a :=
|
|
|
|
|
length_pos_of_mem (cyc_has_one a)
|
|
|
|
|
|
|
|
|
|
lemma cyc_mul_closed (a : A) : finset_mul_closed_on (cyc a) :=
|
|
|
|
|
take g h, assume Pgin Phin,
|
|
|
|
|
obtain n Plt Pe, from exists_pow_eq_one a,
|
2015-08-08 22:10:44 +00:00
|
|
|
|
obtain i Pilt Pig, from of_mem_sep Pgin,
|
|
|
|
|
obtain j Pjlt Pjh, from of_mem_sep Phin,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
begin
|
|
|
|
|
rewrite [-Pig, -Pjh, -pow_add, pow_mod Pe],
|
2015-08-08 22:10:44 +00:00
|
|
|
|
apply mem_sep_of_mem !mem_univ,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
existsi ((i + j) mod (succ n)), apply and.intro,
|
2015-10-22 21:35:27 +00:00
|
|
|
|
apply nat.lt_trans (mod_lt (i+j) !zero_lt_succ) (succ_lt_succ Plt),
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
apply rfl
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma cyc_has_inv (a : A) : finset_has_inv (cyc a) :=
|
|
|
|
|
take g, assume Pgin,
|
|
|
|
|
obtain n Plt Pe, from exists_pow_eq_one a,
|
2015-08-08 22:10:44 +00:00
|
|
|
|
obtain i Pilt Pig, from of_mem_sep Pgin,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
let ni := -(mk_mod n i) in
|
|
|
|
|
assert Pinv : g*a^ni = 1, by
|
|
|
|
|
rewrite [-Pig, mk_pow_mod Pe, -(pow_madd Pe), add.right_inv],
|
|
|
|
|
begin
|
|
|
|
|
rewrite [inv_eq_of_mul_eq_one Pinv],
|
2015-08-08 22:10:44 +00:00
|
|
|
|
apply mem_sep_of_mem !mem_univ,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
existsi ni, apply and.intro,
|
2015-10-22 21:35:27 +00:00
|
|
|
|
apply nat.lt_trans (is_lt ni) (succ_lt_succ Plt),
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
apply rfl
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma self_mem_cyc (a : A) : a ∈ cyc a :=
|
2015-08-08 22:10:44 +00:00
|
|
|
|
mem_sep_of_mem !mem_univ
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
(exists.intro (1 : nat) (and.intro (succ_lt_succ card_pos) !pow_one))
|
|
|
|
|
|
|
|
|
|
lemma mem_cyc (a : A) : ∀ {n : nat}, a^n ∈ cyc a
|
|
|
|
|
| 0 := cyc_has_one a
|
|
|
|
|
| (succ n) :=
|
2015-08-14 15:00:16 +00:00
|
|
|
|
begin rewrite pow_succ', apply cyc_mul_closed a, exact mem_cyc, apply self_mem_cyc end
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma order_le {a : A} {n : nat} : a^(succ n) = 1 → order a ≤ succ n :=
|
2015-10-10 17:38:09 +00:00
|
|
|
|
assume Pe, let s := image (pow_nat a) (upto (succ n)) in
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
assert Psub: cyc a ⊆ s, from subset_of_forall
|
2015-08-08 22:10:44 +00:00
|
|
|
|
(take g, assume Pgin, obtain i Pilt Pig, from of_mem_sep Pgin, begin
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
rewrite [-Pig, pow_mod Pe],
|
2015-07-25 17:38:24 +00:00
|
|
|
|
apply mem_image,
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
apply mem_upto_of_lt (mod_lt i !zero_lt_succ),
|
|
|
|
|
exact rfl end),
|
2015-07-31 03:14:48 +00:00
|
|
|
|
#nat calc order a ≤ card s : card_le_card_of_subset Psub
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
... ≤ card (upto (succ n)) : !card_image_le
|
2015-07-31 03:14:48 +00:00
|
|
|
|
... = succ n : card_upto (succ n)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma pow_ne_of_lt_order {a : A} {n : nat} : succ n < order a → a^(succ n) ≠ 1 :=
|
2015-10-10 17:38:09 +00:00
|
|
|
|
assume Plt, not_imp_not_of_imp order_le (not_le_of_gt Plt)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma eq_zero_of_pow_eq_one {a : A} : ∀ {n : nat}, a^n = 1 → n < order a → n = 0
|
|
|
|
|
| 0 := assume Pe Plt, rfl
|
|
|
|
|
| (succ n) := assume Pe Plt, absurd Pe (pow_ne_of_lt_order Plt)
|
|
|
|
|
|
|
|
|
|
lemma pow_fin_inj (a : A) (n : nat) : injective (pow_fin a n) :=
|
2015-10-10 17:38:09 +00:00
|
|
|
|
take i j : fin (order a),
|
2015-07-31 03:14:48 +00:00
|
|
|
|
suppose a^(i + n) = a^(j + n),
|
2015-08-04 00:49:20 +00:00
|
|
|
|
have a^(dist i j) = 1, begin apply !dist_add_add_right ▸ (pow_dist_eq_one_of_pow_eq this) end,
|
|
|
|
|
have dist i j = 0, from
|
|
|
|
|
eq_zero_of_pow_eq_one this (nat.lt_of_le_of_lt dist_le_max (max_lt i j)),
|
|
|
|
|
eq_of_veq (eq_of_dist_eq_zero this)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma cyc_eq_cyc (a : A) (n : nat) : cyc_pow_fin a n = cyc a :=
|
|
|
|
|
assert Psub : cyc_pow_fin a n ⊆ cyc a, from subset_of_forall
|
|
|
|
|
(take g, assume Pgin,
|
|
|
|
|
obtain i Pin Pig, from exists_of_mem_image Pgin, by rewrite [-Pig]; apply mem_cyc),
|
|
|
|
|
eq_of_card_eq_of_subset (begin apply eq.trans,
|
|
|
|
|
apply card_image_eq_of_inj_on,
|
|
|
|
|
rewrite [to_set_univ, -set.injective_iff_inj_on_univ], exact pow_fin_inj a n,
|
|
|
|
|
rewrite [card_fin] end) Psub
|
|
|
|
|
|
|
|
|
|
lemma pow_order (a : A) : a^(order a) = 1 :=
|
|
|
|
|
obtain i Pin Pone, from exists_of_mem_image (eq.symm (cyc_eq_cyc a 1) ▸ cyc_has_one a),
|
|
|
|
|
or.elim (eq_or_lt_of_le (succ_le_of_lt (is_lt i)))
|
|
|
|
|
(assume P, P ▸ Pone) (assume P, absurd Pone (pow_ne_of_lt_order P))
|
|
|
|
|
|
|
|
|
|
lemma eq_one_of_order_eq_one {a : A} : order a = 1 → a = 1 :=
|
|
|
|
|
assume Porder,
|
2015-07-31 03:14:48 +00:00
|
|
|
|
calc a = a^1 : by rewrite (pow_one a)
|
|
|
|
|
... = a^(order a) : by rewrite Porder
|
|
|
|
|
... = 1 : by rewrite pow_order
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma order_of_min_pow {a : A} {n : nat}
|
|
|
|
|
(Pone : a^(succ n) = 1) (Pmin : ∀ i, i < n → a^(succ i) ≠ 1) : order a = succ n :=
|
|
|
|
|
or.elim (eq_or_lt_of_le (order_le Pone)) (λ P, P)
|
|
|
|
|
(λ P : order a < succ n, begin
|
|
|
|
|
assert Pn : a^(order a) ≠ 1,
|
|
|
|
|
rewrite [-(succ_pred_of_pos (order_pos a))],
|
|
|
|
|
apply Pmin, apply nat.lt_of_succ_lt_succ,
|
|
|
|
|
rewrite [succ_pred_of_pos !order_pos], assumption,
|
|
|
|
|
exact absurd (pow_order a) Pn end)
|
|
|
|
|
|
|
|
|
|
lemma order_dvd_of_pow_eq_one {a : A} {n : nat} (Pone : a^n = 1) : order a ∣ n :=
|
|
|
|
|
assert Pe : a^(n mod order a) = 1, from
|
|
|
|
|
begin
|
|
|
|
|
revert Pone,
|
|
|
|
|
rewrite [eq_div_mul_add_mod n (order a) at {1}, pow_add, mul.comm _ (order a), pow_mul, pow_order, one_pow, one_mul],
|
|
|
|
|
intros, assumption
|
|
|
|
|
end,
|
|
|
|
|
dvd_of_mod_eq_zero (eq_zero_of_pow_eq_one Pe (mod_lt n !order_pos))
|
|
|
|
|
|
|
|
|
|
definition cyc_is_finsubg [instance] (a : A) : is_finsubg (cyc a) :=
|
|
|
|
|
is_finsubg.mk (cyc_has_one a) (cyc_mul_closed a) (cyc_has_inv a)
|
|
|
|
|
|
|
|
|
|
lemma order_dvd_group_order (a : A) : order a ∣ card A :=
|
|
|
|
|
dvd.intro (eq.symm (!mul.comm ▸ lagrange_theorem (subset_univ (cyc a))))
|
|
|
|
|
|
2015-10-10 17:38:09 +00:00
|
|
|
|
definition pow_fin' (a : A) (i : fin (succ (pred (order a)))) := pow_nat a i
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
local attribute group_of_add_group [instance]
|
|
|
|
|
|
|
|
|
|
lemma pow_fin_hom (a : A) : homomorphic (pow_fin' a) :=
|
2015-10-10 17:38:09 +00:00
|
|
|
|
take i j : fin (succ (pred (order a))),
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
begin
|
|
|
|
|
rewrite [↑pow_fin'],
|
|
|
|
|
apply pow_madd,
|
|
|
|
|
rewrite [succ_pred_of_pos !order_pos],
|
|
|
|
|
exact pow_order a
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pow_fin_is_iso (a : A) : is_iso_class (pow_fin' a) :=
|
|
|
|
|
is_iso_class.mk (pow_fin_hom a)
|
2015-10-12 22:00:27 +00:00
|
|
|
|
(have H : injective (λ (i : fin (order a)), a ^ (val i + 0)), from pow_fin_inj a 0,
|
|
|
|
|
begin+ rewrite [↑pow_fin', succ_pred_of_pos !order_pos]; exact H end)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
end cyclic
|
|
|
|
|
|
|
|
|
|
section rot
|
|
|
|
|
open nat list
|
|
|
|
|
open fin fintype list
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
local attribute group_of_add_group [instance]
|
|
|
|
|
lemma pow_eq_mul {n : nat} {i : fin (succ n)} : ∀ {k : nat}, i^k = mk_mod n (i*k)
|
|
|
|
|
| 0 := by rewrite [pow_zero]
|
|
|
|
|
| (succ k) := begin
|
2015-08-14 15:00:16 +00:00
|
|
|
|
assert Psucc : i^(succ k) = madd (i^k) i, apply pow_succ',
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
rewrite [Psucc, pow_eq_mul],
|
|
|
|
|
apply eq_of_veq,
|
|
|
|
|
rewrite [mul_succ, val_madd, ↑mk_mod, mod_add_mod]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition rotl : ∀ {n : nat} m : nat, fin n → fin n
|
|
|
|
|
| 0 := take m i, elim0 i
|
|
|
|
|
| (succ n) := take m, madd (mk_mod n (n*m))
|
|
|
|
|
|
|
|
|
|
definition rotr : ∀ {n : nat} m : nat, fin n → fin n
|
|
|
|
|
| (0:nat) := take m i, elim0 i
|
|
|
|
|
| (nat.succ n) := take m, madd (-(mk_mod n (n*m)))
|
|
|
|
|
|
|
|
|
|
lemma rotl_succ' {n m : nat} : rotl m = madd (mk_mod n (n*m)) := rfl
|
|
|
|
|
|
|
|
|
|
lemma rotl_zero : ∀ {n : nat}, @rotl n 0 = id
|
|
|
|
|
| 0 := funext take i, elim0 i
|
2015-10-12 22:00:27 +00:00
|
|
|
|
| (nat.succ n) := funext take i, begin rewrite [↑rotl, mul_zero, mk_mod_zero_eq, zero_madd] end
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma rotl_id : ∀ {n : nat}, @rotl n n = id
|
|
|
|
|
| 0 := funext take i, elim0 i
|
2015-10-12 22:00:27 +00:00
|
|
|
|
| (nat.succ n) :=
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
assert P : mk_mod n (n * succ n) = mk_mod n 0,
|
2015-10-12 22:00:27 +00:00
|
|
|
|
from eq_of_veq (by rewrite [↑mk_mod, mul_mod_left]),
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
begin rewrite [rotl_succ', P], apply rotl_zero end
|
|
|
|
|
|
2015-10-12 22:00:27 +00:00
|
|
|
|
lemma rotl_to_zero {n i : nat} : rotl i (mk_mod n i) = 0 :=
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
eq_of_veq begin rewrite [↑rotl, val_madd], esimp [mk_mod], rewrite [ mod_add_mod, add_mod_mod, -succ_mul, mul_mod_right] end
|
|
|
|
|
|
|
|
|
|
lemma rotl_compose : ∀ {n : nat} {j k : nat}, (@rotl n j) ∘ (rotl k) = rotl (j + k)
|
|
|
|
|
| 0 := take j k, funext take i, elim0 i
|
|
|
|
|
| (succ n) := take j k, funext take i, eq.symm begin
|
2015-10-14 19:27:09 +00:00
|
|
|
|
rewrite [*rotl_succ', left_distrib, -(@madd_mk_mod n (n*j)), madd_assoc],
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma rotr_rotl : ∀ {n : nat} (m : nat) {i : fin n}, rotr m (rotl m i) = i
|
|
|
|
|
| 0 := take m i, elim0 i
|
|
|
|
|
| (nat.succ n) := take m i, calc (-(mk_mod n (n*m))) + ((mk_mod n (n*m)) + i) = i : by rewrite neg_add_cancel_left
|
|
|
|
|
|
|
|
|
|
lemma rotl_rotr : ∀ {n : nat} (m : nat), (@rotl n m) ∘ (rotr m) = id
|
|
|
|
|
| 0 := take m, funext take i, elim0 i
|
|
|
|
|
| (nat.succ n) := take m, funext take i, calc (mk_mod n (n*m)) + (-(mk_mod n (n*m)) + i) = i : add_neg_cancel_left
|
|
|
|
|
|
|
|
|
|
lemma rotl_succ {n : nat} : (rotl 1) ∘ (@succ n) = lift_succ :=
|
2015-10-13 20:16:19 +00:00
|
|
|
|
funext (take i, eq_of_veq (begin rewrite [↑compose, ↑rotl, ↑madd, mul_one n, ↑mk_mod, mod_add_mod, ↑lift_succ, val_succ, -succ_add_eq_succ_add, add_mod_self_left, mod_eq_of_lt (lt.trans (is_lt i) !lt_succ_self), -val_lift] end))
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
definition list.rotl {A : Type} : ∀ l : list A, list A
|
|
|
|
|
| [] := []
|
|
|
|
|
| (a::l) := l++[a]
|
|
|
|
|
|
|
|
|
|
lemma rotl_cons {A : Type} {a : A} {l} : list.rotl (a::l) = l++[a] := rfl
|
|
|
|
|
|
|
|
|
|
lemma rotl_map {A B : Type} {f : A → B} : ∀ {l : list A}, list.rotl (map f l) = map f (list.rotl l)
|
|
|
|
|
| [] := rfl
|
|
|
|
|
| (a::l) := begin rewrite [map_cons, *rotl_cons, map_append] end
|
|
|
|
|
|
|
|
|
|
lemma rotl_eq_rotl : ∀ {n : nat}, map (rotl 1) (upto n) = list.rotl (upto n)
|
|
|
|
|
| 0 := rfl
|
|
|
|
|
| (succ n) := begin
|
|
|
|
|
rewrite [upto_step at {1}, upto_succ, rotl_cons, map_append],
|
|
|
|
|
congruence,
|
|
|
|
|
rewrite [map_map], congruence, exact rotl_succ,
|
2015-10-12 22:00:27 +00:00
|
|
|
|
rewrite [map_singleton], congruence, rewrite [↑rotl, mul_one n, ↑mk_mod, ↑maxi, ↑madd],
|
|
|
|
|
congruence, rewrite [ mod_add_mod, val_zero, add_zero, mod_eq_of_lt !lt_succ_self ]
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition seq [reducible] (A : Type) (n : nat) := fin n → A
|
|
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
|
|
|
|
|
definition rotl_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotl m)
|
|
|
|
|
definition rotr_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotr m)
|
|
|
|
|
|
|
|
|
|
lemma rotl_seq_zero {n : nat} : rotl_fun 0 = @id (seq A n) :=
|
|
|
|
|
funext take f, begin rewrite [↑rotl_fun, rotl_zero] end
|
|
|
|
|
|
|
|
|
|
lemma rotl_seq_ne_id : ∀ {n : nat}, (∃ a b : A, a ≠ b) → ∀ i, i < n → rotl_fun (succ i) ≠ (@id (seq A (succ n)))
|
2015-10-12 22:00:27 +00:00
|
|
|
|
| 0 := assume Pex, take i, assume Piltn, absurd Piltn !not_lt_zero
|
|
|
|
|
| (nat.succ n) := assume Pex, obtain a b Pne, from Pex, take i, assume Pilt,
|
|
|
|
|
let f := (λ j : fin (succ (succ n)), if j = 0 then a else b),
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
fi := mk_mod (succ n) (succ i) in
|
|
|
|
|
have Pfne : rotl_fun (succ i) f fi ≠ f fi,
|
|
|
|
|
from begin rewrite [↑rotl_fun, rotl_to_zero, mk_mod_of_lt (succ_lt_succ Pilt), if_pos rfl, if_neg mk_succ_ne_zero], assumption end,
|
|
|
|
|
have P : rotl_fun (succ i) f ≠ f, from
|
|
|
|
|
assume Peq, absurd (congr_fun Peq fi) Pfne,
|
|
|
|
|
assume Peq, absurd (congr_fun Peq f) P
|
|
|
|
|
|
|
|
|
|
lemma rotr_rotl_fun {n : nat} (m : nat) (f : seq A n) : rotr_fun m (rotl_fun m f) = f :=
|
2015-07-31 03:14:48 +00:00
|
|
|
|
calc f ∘ (rotl m) ∘ (rotr m) = f ∘ ((rotl m) ∘ (rotr m)) : by rewrite -compose.assoc
|
|
|
|
|
... = f ∘ id : by rewrite (rotl_rotr m)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma rotl_fun_inj {n : nat} {m : nat} : @injective (seq A n) (seq A n) (rotl_fun m) :=
|
|
|
|
|
injective_of_has_left_inverse (exists.intro (rotr_fun m) (rotr_rotl_fun m))
|
|
|
|
|
|
|
|
|
|
lemma seq_rotl_eq_list_rotl {n : nat} (f : seq A n) :
|
|
|
|
|
fun_to_list (rotl_fun 1 f) = list.rotl (fun_to_list f) :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [↑fun_to_list, ↑rotl_fun, -map_map, rotl_map],
|
|
|
|
|
congruence, exact rotl_eq_rotl
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end rot
|
|
|
|
|
|
|
|
|
|
section rotg
|
|
|
|
|
open nat fin fintype
|
|
|
|
|
|
|
|
|
|
definition rotl_perm [reducible] (A : Type) [finA : fintype A] [deceqA : decidable_eq A] (n : nat) (m : nat) : perm (seq A n) :=
|
|
|
|
|
perm.mk (rotl_fun m) rotl_fun_inj
|
|
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
variable [finA : fintype A]
|
|
|
|
|
variable [deceqA : decidable_eq A]
|
|
|
|
|
variable {n : nat}
|
2015-07-31 03:14:48 +00:00
|
|
|
|
include finA deceqA
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma rotl_perm_mul {i j : nat} : (rotl_perm A n i) * (rotl_perm A n j) = rotl_perm A n (j+i) :=
|
|
|
|
|
eq_of_feq (funext take f, calc
|
2015-07-31 03:14:48 +00:00
|
|
|
|
f ∘ (rotl j) ∘ (rotl i) = f ∘ ((rotl j) ∘ (rotl i)) : by rewrite -compose.assoc
|
|
|
|
|
... = f ∘ (rotl (j+i)) : by rewrite rotl_compose)
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma rotl_perm_pow_eq : ∀ {i : nat}, (rotl_perm A n 1) ^ i = rotl_perm A n i
|
2015-07-31 03:14:48 +00:00
|
|
|
|
| 0 := begin rewrite [pow_zero, ↑rotl_perm, perm_one, -eq_iff_feq], esimp, rewrite rotl_seq_zero end
|
2015-08-14 15:00:16 +00:00
|
|
|
|
| (succ i) := begin rewrite [pow_succ', rotl_perm_pow_eq, rotl_perm_mul, one_add] end
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
lemma rotl_perm_pow_eq_one : (rotl_perm A n 1) ^ n = 1 :=
|
|
|
|
|
eq.trans rotl_perm_pow_eq (eq_of_feq begin esimp [rotl_perm], rewrite [↑rotl_fun, rotl_id] end)
|
|
|
|
|
|
|
|
|
|
lemma rotl_perm_mod {i : nat} : rotl_perm A n i = rotl_perm A n (i mod n) :=
|
2015-07-31 03:14:48 +00:00
|
|
|
|
calc rotl_perm A n i = (rotl_perm A n 1) ^ i : by rewrite rotl_perm_pow_eq
|
|
|
|
|
... = (rotl_perm A n 1) ^ (i mod n) : by rewrite (pow_mod rotl_perm_pow_eq_one)
|
|
|
|
|
... = rotl_perm A n (i mod n) : by rewrite rotl_perm_pow_eq
|
feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
finite cosets and lcoset_type, normalizer for finite groups, coset product
and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-16 03:02:11 +00:00
|
|
|
|
|
|
|
|
|
-- needs A to have at least two elements!
|
|
|
|
|
lemma rotl_perm_pow_ne_one (Pex : ∃ a b : A, a ≠ b) : ∀ i, i < n → (rotl_perm A (succ n) 1)^(succ i) ≠ 1 :=
|
|
|
|
|
take i, assume Piltn, begin
|
|
|
|
|
intro P, revert P, rewrite [rotl_perm_pow_eq, -eq_iff_feq, perm_one, *perm.f_mk],
|
|
|
|
|
intro P, exact absurd P (rotl_seq_ne_id Pex i Piltn)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma rotl_perm_order (Pex : ∃ a b : A, a ≠ b) : order (rotl_perm A (succ n) 1) = (succ n) :=
|
|
|
|
|
order_of_min_pow rotl_perm_pow_eq_one (rotl_perm_pow_ne_one Pex)
|
|
|
|
|
|
|
|
|
|
end rotg
|
|
|
|
|
end group
|